/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/common.h" #include "tensorrt_llm/runtime/iTensor.h" #include namespace tensorrt_llm::runtime { template class GenericPromptTuningParams { public: using TensorPtr = TTensor; using SizeType = tensorrt_llm::runtime::SizeType; explicit GenericPromptTuningParams( TensorPtr embeddingTable = TensorPtr(), TensorPtr tasks = TensorPtr(), TensorPtr vocabSize = TensorPtr()) : embeddingTable{std::move(embeddingTable)} , tasks{std::move(tasks)} , vocabSize{std::move(vocabSize)} {}; // The prompt embedding table TensorPtr embeddingTable; // [numTasks * taskVocabSize, hidden_dim], on gpu // In GenerationInput, tasks expected shape is [batchSize] // For context requests with non-packed inputs, expected shape is [batchSize, 1] // For generation requests with non-packed inputs, expected shape is [batchSize*beamWidth] for generation requests. // For packed inputs, expected shape is [packedLength] (note that ifb currently doesn't support non-packed // inputs) TensorPtr tasks; TensorPtr vocabSize; // [1], on gpu std::vector promptTuningEnabled; // [batchSize] vector of bool that indicates which requests in a batch have ptuning enabled }; class PromptTuningParams : public GenericPromptTuningParams { public: using TensorPtr = ITensor::SharedPtr; using SizeType = GenericPromptTuningParams::SizeType; explicit PromptTuningParams( TensorPtr embeddingTable = nullptr, TensorPtr tasks = nullptr, TensorPtr vocabSize = nullptr) : GenericPromptTuningParams(std::move(embeddingTable), std::move(tasks), std::move(vocabSize)) { } // Fill the tasks tensor for the batch using the provided tasksHost // Function assumes that the first numContextRequests requests in the batch are context requests void fillTasksTensor(TensorPtr tasksHost, const SizeType batchSize, const SizeType numContextRequests, std::vector const& reqBeamWidths, std::vector const& reqPromptLengths, BufferManager const& manager, bool packedInput); }; } // namespace tensorrt_llm::runtime