# Adapted from https://github.com/sgl-project/sglang/blob/030496eb06472f76fcb11de53d93f10cefb4604f/python/sglang/cli/utils.py#L27 import json import logging import os from tensorrt_llm.llmapi.utils import download_hf_partial logger = logging.getLogger(__name__) def _maybe_download_model( model_name_or_path: str, local_dir: str | None = None, download: bool = True ) -> str: """Resolve a model path. If it's a local directory, return it. If it's a Hugging Face Hub ID, download only the config file (`model_index.json` or `config.json`) and return its directory. Args: model_name_or_path: Local path or Hugging Face Hub model ID local_dir: Local directory to save the downloaded file (if any) download: Whether to download from Hugging Face Hub when needed Returns: Local directory path that contains the downloaded config file, or the original local directory. """ if os.path.exists(model_name_or_path): logger.info("Model already exists locally") return model_name_or_path if not download: return model_name_or_path try: logger.info( "Downloading model_index.json from HF Hub for %s...", model_name_or_path, ) file_path = download_hf_partial( model=model_name_or_path, allow_patterns=["model_index.json", "config.json"], ) logger.info("Downloaded to %s", file_path) return str(file_path) except Exception as e: raise ValueError( ( "Could not find model locally at %s and failed to download " "model_index.json/config.json from HF Hub: %s" ) % (model_name_or_path, e) ) from e # Copied and adapted from hf_diffusers_utils.py def is_diffusers_model_path(model_path: str) -> bool: """Verify if the model directory contains a valid diffusers configuration. Args: model_path: Path to the model directory Returns: The loaded model configuration as a dictionary if the model is a diffusers model None if the model is not a diffusers model """ # Prefer model_index.json which indicates a diffusers pipeline config_path = os.path.join(model_path, "model_index.json") if not os.path.exists(config_path): return False # Load the config with open(config_path) as f: config = json.load(f) # Verify diffusers version exists if "_diffusers_version" not in config: return False return True def get_is_diffusion_model(model_path: str): model_path = _maybe_download_model(model_path) is_diffusion_model = is_diffusers_model_path(model_path) if is_diffusion_model: logger.info("Diffusion model detected") return is_diffusion_model def get_model_path(extra_argv): # Find the model_path argument model_path = None for i, arg in enumerate(extra_argv): if arg == "--model-path": if i + 1 < len(extra_argv): model_path = extra_argv[i + 1] break elif arg.startswith("--model-path="): model_path = arg.split("=", 1)[1] break if model_path is None: # Fallback for --help or other cases where model-path is not provided if any(h in extra_argv for h in ["-h", "--help"]): raise Exception( "Usage: sglang serve --model-path [additional-arguments]\n\n" "This command can launch either a standard language model server or a diffusion model server.\n" "The server type is determined by the model path.\n" "For specific arguments, please provide a model_path." ) else: raise Exception( "Error: --model-path is required. Please provide the path to the model." ) return model_path VISUAL_GEN_PARTIAL_MODEL_NAME_TO_MODEL_TYPE = { "FLUX.2": "flux2", "LTX-2": "ltx2", "Wan2": "wan2", } def get_visual_gen_model_type(model_path: str): for partial_model_name, model_type in VISUAL_GEN_PARTIAL_MODEL_NAME_TO_MODEL_TYPE.items(): if partial_model_name.lower() in model_path.lower(): return model_type raise ValueError( f"Unknown VISUAL_GEN model type for model path: {model_path}," f"available models: {VISUAL_GEN_PARTIAL_MODEL_NAME_TO_MODEL_TYPE.keys()}" )