!!! WARNING: This is not intended for external users to benchmark the performance numbers of the TRT-LLM product. !!! This folder contains the benchmark script used internally to assistant TRT-LLM development. # build_time_benchmark ```bash # example 1: offline benmark for all the built-in models, see --help for all the options python ./build_time_benchmark.py --model ALL # By default, the benmark don't load the weights to save benchmark time, load the weights to test the TRT-LLM load and convert time # WARNING: this can takes very long time if the model is large, or if you use a online HF model id since it can download the weights python ./build_time_benchmark.py --model ALL --load # example 2: benchmark a HF model model w/o downloading the model locally in advance python ./build_time_benchmark.py --model "TinyLlama/TinyLlama_v1.1" # no weights loading python ./build_time_benchmark.py --model "openai-community/gpt2" --load # with weights loading # example 3: benchmark a local download HF model python ./build_time_benchmark.py --model /home/scratch.trt_llm_data/llm-models/falcon-rw-1b/ # example 4: benchmark one model with managed weights option, with verbose option python ./build_time_benchmark.py --model llama2-70b.TP4 --managed_weights -v # example 5: see help python ./build_time_benchmark.py --help ```