/* * MIT License * * Copyright (c) 2025 DeepSeek * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * reference: https://github.com/deepseek-ai/FlashMLA */ #pragma once //////////////////////////////////////////////////////////////////////////////////////////////////// struct Flash_fwd_mla_params { using index_t = int64_t; int b, seqlen_q, d, d_v; int h, h_h_k_ratio, ngroups; bool is_causal; float scale_softmax, scale_softmax_log2; int* __restrict__ cu_seqlens_k; void* __restrict__ q_ptr; void* __restrict__ k_ptr; void* __restrict__ v_ptr; void* __restrict__ o_ptr; void* __restrict__ softmax_lse_ptr; float* __restrict__ descale_q_ptr = nullptr; float* __restrict__ descale_k_ptr = nullptr; index_t q_batch_stride; index_t k_batch_stride; index_t v_batch_stride; index_t o_batch_stride; index_t q_row_stride; index_t k_row_stride; index_t v_row_stride; index_t o_row_stride; index_t q_head_stride; index_t k_head_stride; index_t v_head_stride; index_t o_head_stride; int* __restrict__ block_table; index_t block_table_batch_stride; int page_block_size; int* __restrict__ tile_scheduler_metadata_ptr; int num_sm_parts; int* __restrict__ num_splits_ptr; void* __restrict__ softmax_lseaccum_ptr; void* __restrict__ oaccum_ptr; }; static constexpr int TileSchedulerMetaDataSize = 8; // [begin_idx, begin_seqlen, end_idx, end_seqlen, begin_n_split_idx, _, _, _] //////////////////////////////////////////////////////////////////////////////////////////////////// template void run_mha_fwd_splitkv_mla(Flash_fwd_mla_params& params, cudaStream_t stream); struct Mla_metadata_params { int* __restrict__ seqlens_k_ptr; int* __restrict__ tile_scheduler_metadata_ptr; int* __restrict__ num_splits_ptr; int batch_size; int block_size_n; int fixed_overhead_num_blocks; int num_sm_parts; }; void get_mla_metadata_func(Mla_metadata_params& params, cudaStream_t stream);