/* * SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "quantizeToFP4Plugin.h" #include "pluginUtils.h" #include "tensorrt_llm/kernels/quantization.h" #include using namespace nvinfer1; using namespace tensorrt_llm::kernels; using namespace tensorrt_llm::common; using tensorrt_llm::plugins::QuantizeToFP4PluginCreator; using tensorrt_llm::plugins::QuantizeToFP4Plugin; constexpr nvinfer1::DataType FP4_DTYPE = nvinfer1::DataType::kFP4; constexpr nvinfer1::DataType FP8_DTYPE = nvinfer1::DataType::kFP8; static char const* QUANT_FP4_PLUGIN_VERSION{"1"}; static char const* QUANT_FP4_PLUGIN_NAME{"QuantizeToFP4"}; PluginFieldCollection QuantizeToFP4PluginCreator::mFC{}; std::vector QuantizeToFP4PluginCreator::mPluginAttributes; QuantizeToFP4Plugin::QuantizeToFP4Plugin(){}; // Parameterized constructor QuantizeToFP4Plugin::QuantizeToFP4Plugin(void const* data, size_t length) { char const *d = reinterpret_cast(data), *a = d; TLLM_CHECK_WITH_INFO(d == a + length, "Expected length (%d) != real length (%d). This is often " "caused by using different TensorRT LLM version to build " "engine and run engine.", (int) length, (int) (d - a)); } // IPluginV2DynamicExt Methods nvinfer1::IPluginV2DynamicExt* QuantizeToFP4Plugin::clone() const noexcept { auto* plugin = new QuantizeToFP4Plugin(); plugin->setPluginNamespace(mNamespace.c_str()); return plugin; } nvinfer1::DimsExprs QuantizeToFP4Plugin::getOutputDimensions( int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept { // Quantized output in FP4 datatype. if (outputIndex == 0) { DimsExprs ret; ret.nbDims = inputs[0].nbDims; for (int di = 0; di < ret.nbDims; ++di) { ret.d[di] = inputs[0].d[di]; } // // Div up by 16 as the storage type has 16 FP4 values per element. // ret.d[ret.nbDims - 1] // = exprBuilder.operation(DimensionOperation::kCEIL_DIV, *ret.d[ret.nbDims - 1], // *exprBuilder.constant(16)); return ret; } // Scaling Factors in FP8. else if (outputIndex == 1) { DimsExprs ret; ret.nbDims = inputs[0].nbDims; for (int di = 0; di < ret.nbDims; ++di) { ret.d[di] = inputs[0].d[di]; } // Sequence dimension or token dimension. // Pad to multiple of 128. auto dimM = exprBuilder.operation(DimensionOperation::kCEIL_DIV, *ret.d[ret.nbDims - 2], *exprBuilder.constant(128)); ret.d[ret.nbDims - 2] = exprBuilder.operation(DimensionOperation::kPROD, *dimM, *exprBuilder.constant(128)); // Hidden size dimension. // Div (rounding up) by 16 since 16 elements share one SF and SF padded to k%4==0. ret.d[ret.nbDims - 1] = exprBuilder.operation(DimensionOperation::kCEIL_DIV, *ret.d[ret.nbDims - 1], *exprBuilder.constant(16)); return ret; } return DimsExprs{}; } bool QuantizeToFP4Plugin::supportsFormatCombination( int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept { // half input + float global_sf + fp4 output (e2m1) + fp8 SF output. int const totalPoses = 2 + 2; TLLM_CHECK(0 <= pos && pos < totalPoses); TLLM_CHECK(nbInputs == 2); switch (pos) { case 0: return (inOut[pos].type == nvinfer1::DataType::kHALF || inOut[pos].type == nvinfer1::DataType::kBF16 || inOut[pos].type == nvinfer1::DataType::kFP8) && (inOut[pos].format == TensorFormat::kLINEAR); case 1: return (inOut[pos].type == nvinfer1::DataType::kFLOAT) && (inOut[pos].format == TensorFormat::kLINEAR); case 2: return (inOut[pos].type == FP4_DTYPE) && (inOut[pos].format == TensorFormat::kLINEAR); case 3: return (inOut[pos].type == FP8_DTYPE) && (inOut[pos].format == TensorFormat::kLINEAR); default: break; } return false; } void QuantizeToFP4Plugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs, nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept { } size_t QuantizeToFP4Plugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs, nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept { return 0; } int QuantizeToFP4Plugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept { // inputs // input [M(*), N] half data type // SF scale [1] float data type // used to scale SF from input range to fp8 range (448.f / (MaxVal of input / 6.f)) // outputs // output [M(*), N] fp4 storage (E2M1) // SF output [M, N / 16] fp8 storage (UE4M3) int64_t m64 = 1; for (int i = 0; i < inputDesc[0].dims.nbDims - 1; ++i) { m64 *= inputDesc[0].dims.d[i]; } int const m = TLLM_INT32_CAST(m64); int const n = TLLM_INT32_CAST(inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1]); TLLM_CHECK_WITH_INFO(n % 16 == 0, "the N dimension must be multiple of 16."); float const* SFScale = static_cast(inputs[1]); int64_t* output = reinterpret_cast(outputs[0]); int32_t* SFoutput = reinterpret_cast(outputs[1]); DataType inputDtype = inputDesc[0].type; switch (inputDtype) { case DataType::kHALF: { auto input = reinterpret_cast(inputs[0]); invokeFP4Quantization(m, n, input, SFScale, output, SFoutput, false, FP4QuantizationSFLayout::SWIZZLED, mMultiProcessorCount, stream); break; } case DataType::kBF16: { auto input = reinterpret_cast<__nv_bfloat16 const*>(inputs[0]); invokeFP4Quantization(m, n, input, SFScale, output, SFoutput, false, FP4QuantizationSFLayout::SWIZZLED, mMultiProcessorCount, stream); break; } case DataType::kFP8: { auto input = reinterpret_cast<__nv_fp8_e4m3 const*>(inputs[0]); invokeFP4Quantization(m, n, input, SFScale, output, SFoutput, false, FP4QuantizationSFLayout::SWIZZLED, mMultiProcessorCount, stream); break; } default: TLLM_LOG_ERROR("only half, bfloat16 and fp8 data type are supported."); break; } // Use UE4M3 scales by default. return 0; } // IPluginV2Ext Methods nvinfer1::DataType QuantizeToFP4Plugin::getOutputDataType( int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept { if (index == 0) { // Output 0 quantized output. return FP4_DTYPE; } // Output 1 SF (scaling factors). return FP8_DTYPE; } // IPluginV2 Methods char const* QuantizeToFP4Plugin::getPluginType() const noexcept { return QUANT_FP4_PLUGIN_NAME; } char const* QuantizeToFP4Plugin::getPluginVersion() const noexcept { return QUANT_FP4_PLUGIN_VERSION; } int QuantizeToFP4Plugin::getNbOutputs() const noexcept { return 2; } int QuantizeToFP4Plugin::initialize() noexcept { return 0; } void QuantizeToFP4Plugin::terminate() noexcept {} size_t QuantizeToFP4Plugin::getSerializationSize() const noexcept { return 0; } void QuantizeToFP4Plugin::serialize(void* buffer) const noexcept { char *d = static_cast(buffer), *a = d; TLLM_CHECK(d == a + getSerializationSize()); } void QuantizeToFP4Plugin::destroy() noexcept { // This gets called when the network containing plugin is destroyed delete this; } /////////////// QuantizeToFP4PluginCreator::QuantizeToFP4PluginCreator() { // Fill PluginFieldCollection with PluginField arguments metadata mPluginAttributes.clear(); mFC.nbFields = mPluginAttributes.size(); mFC.fields = mPluginAttributes.data(); } char const* QuantizeToFP4PluginCreator::getPluginName() const noexcept { return QUANT_FP4_PLUGIN_NAME; } char const* QuantizeToFP4PluginCreator::getPluginVersion() const noexcept { return QUANT_FP4_PLUGIN_VERSION; } PluginFieldCollection const* QuantizeToFP4PluginCreator::getFieldNames() noexcept { return &mFC; } IPluginV2* QuantizeToFP4PluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept { try { auto* obj = new QuantizeToFP4Plugin(); obj->setPluginNamespace(mNamespace.c_str()); return obj; } catch (std::exception const& e) { caughtError(e); } return nullptr; } IPluginV2* QuantizeToFP4PluginCreator::deserializePlugin( char const* name, void const* serialData, size_t serialLength) noexcept { // This object will be deleted when the network is destroyed, which will // call QuantizeToFP4Plugin::destroy() try { auto* obj = new QuantizeToFP4Plugin(serialData, serialLength); obj->setPluginNamespace(mNamespace.c_str()); return obj; } catch (std::exception const& e) { caughtError(e); } return nullptr; }