/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/workspace.h" #include "tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_gemm_kernels.h" #include "tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_kernels.h" #include "tensorrt_llm/runtime/torchUtils.h" #include "tensorrt_llm/thop/thUtils.h" #include #include #include namespace torch_ext { std::tuple fused_topk_softmax(torch::Tensor const& router_logits, int64_t const top_k, int64_t const num_experts_total, int64_t const start_expert, int64_t const end_expert) { // TODO: enable once the kernel has been added to the internal CUTLASS library. TLLM_CHECK_WITH_INFO(false, "Fused topk/softmax op has not been enabled yet."); CHECK_INPUT(router_logits, torch::kBFloat16); auto const& router_logits_shape = router_logits.sizes(); auto const& rank = router_logits_shape.size(); TORCH_CHECK(rank == 2, "router_logits should be 2D tensor."); int64_t const num_rows = router_logits_shape[0]; auto token_final_scales = torch::empty({num_rows, top_k}, torch::dtype(torch::kFloat32).device(router_logits.device())); auto token_selected_experts = torch::empty({num_rows, top_k}, torch::dtype(torch::kInt32).device(router_logits.device())); // auto stream = at::cuda::getCurrentCUDAStream(router_logits.get_device()); // tensorrt_llm::kernels::topkGatingSoftmaxKernelLauncher( // static_cast<__nv_bfloat16 const*>(router_logits.const_data_ptr()), // static_cast(token_final_scales.data_ptr()), static_cast(token_selected_experts.data_ptr()), // num_rows, top_k, num_experts_total, start_expert, end_expert, stream); return {token_final_scales, token_selected_experts}; } } // namespace torch_ext TORCH_LIBRARY_FRAGMENT(trtllm, m) { m.def( "fused_topk_softmax(Tensor router_logits, int top_k, " "int num_experts_total, int start_expert, " "int end_expert) -> (Tensor, Tensor) "); } TORCH_LIBRARY_IMPL(trtllm, CUDA, m) { m.impl("fused_topk_softmax", &torch_ext::fused_topk_softmax); }