/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "cutlass_extensions/gemm_configs.h" #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/kernels/cutlass_kernels/fp8_rowwise_gemm/fp8_rowwise_gemm.h" #include "tensorrt_llm/thop/thUtils.h" #include "tensorrt_llm/thop/userbuffersTensor.h" #include #include #include #include #include #include #include #include using tensorrt_llm::kernels::cutlass_kernels::CutlassFp8RowwiseGemmRunner; using tensorrt_llm::kernels::cutlass_kernels::CutlassFp8RowwiseGemmRunnerInterface; namespace torch_ext { namespace { void check_input_dtypes(torch::Tensor const& mat, torch::Tensor const& matScale) { TORCH_CHECK(mat.scalar_type() == at::ScalarType::Float8_e4m3fn, "Matrix dtype must be FP8 (the matrix will be dequantized on the fly)."); CHECK_INPUT(matScale, FP8_ROWWISE_SF_DTYPE); } } // namespace template torch::Tensor fp8_rowwise_gemm_launch(torch::Tensor const& mat1, torch::Tensor const& mat2, torch::Tensor const& mat1Scale, torch::Tensor const& mat2Scale, bool to_userbuffers = false, tkc::CutlassGemmConfig const* maybe_config = nullptr) { check_input_dtypes(mat1, mat1Scale); check_input_dtypes(mat2, mat2Scale); TORCH_CHECK(mat1.dim() == 2, "mat1 must be a matrix"); TORCH_CHECK(mat2.dim() == 2, "mat2 must be a matrix"); TORCH_CHECK(mat1.sizes()[1] == mat2.sizes()[1], "mat1 and mat2 shapes cannot be multiplied (", mat1.sizes()[0], "x", mat1.sizes()[1], " and ", mat2.sizes()[0], "x", mat2.sizes()[1], ")"); TORCH_CHECK(mat1.sizes()[0] == mat1Scale.sizes()[0], "mat1Scale should be per-token scale, but got m=", mat1.sizes()[0], ", scale_dim=", mat1Scale.sizes()[0], "."); TORCH_CHECK(mat2.sizes()[0] == mat2Scale.sizes()[0], "mat2Scale should be per-channel scale, but got n=", mat2.sizes()[0], ", scale_dim=", mat2Scale.sizes()[0], "."); auto const m = mat1.sizes()[0]; auto const n = mat2.sizes()[0]; auto const k = mat1.sizes()[1]; static_assert(std::is_same::value || std::is_same::value, "Output type must be half or bfloat16"); static constexpr auto outType = std::is_same::value ? at::ScalarType::Half : at::ScalarType::BFloat16; at::Tensor out; if (to_userbuffers) { out = torch_ext::create_userbuffers_tensor({m, n}, outType).first; } else { out = at::detail::empty_cuda({m, n}, outType, mat1.device(), std::nullopt); } auto stream = at::cuda::getCurrentCUDAStream(mat1.get_device()); auto mGemmRunner = std::make_shared>(); int64_t const wsSize = mGemmRunner->getWorkspaceSize(m, n, k); auto gemmConfig = maybe_config ? *maybe_config : mGemmRunner->getConfigs()[0]; at::Tensor workspace = at::detail::empty_cuda({wsSize}, at::ScalarType::Char, torch::kCUDA, std::nullopt); OutputType* outPtr = reinterpret_cast(out.data_ptr()); __nv_fp8_e4m3 const* mat1Ptr = reinterpret_cast<__nv_fp8_e4m3 const*>(mat1.data_ptr()); __nv_fp8_e4m3 const* mat2Ptr = reinterpret_cast<__nv_fp8_e4m3 const*>(mat2.data_ptr()); float const* mat1ScalePtr = reinterpret_cast(mat1Scale.data_ptr()); float const* mat2ScalePtr = reinterpret_cast(mat2Scale.data_ptr()); char* workspacePtr = reinterpret_cast(workspace.data_ptr()); tensorrt_llm::common::QuantMode quantMode = tensorrt_llm::common::QuantMode::fp8RowWise(); mGemmRunner->gemm(outPtr, mat1Ptr, mat2Ptr, nullptr, quantMode, m, n, k, mat1ScalePtr, mat2ScalePtr, gemmConfig, workspacePtr, wsSize, stream); return out; } template torch::Tensor fp8_rowwise_gemm_launch(torch::Tensor const& mat1, torch::Tensor const& mat2, torch::Tensor const& mat1Scale, torch::Tensor const& mat2Scale, bool to_userbuffers = false, tkc::CutlassGemmConfig const* maybe_config = nullptr); template torch::Tensor fp8_rowwise_gemm_launch<__nv_bfloat16>(torch::Tensor const& mat1, torch::Tensor const& mat2, torch::Tensor const& mat1Scale, torch::Tensor const& mat2Scale, bool to_userbuffers = false, tkc::CutlassGemmConfig const* maybe_config = nullptr); torch::Tensor fp8_rowwise_gemm_dispatch(torch::Tensor const& mat1, torch::Tensor const& mat2, torch::Tensor const& mat1Scale, torch::Tensor const& mat2Scale, at::ScalarType outDataType, bool to_userbuffers = false, tkc::CutlassGemmConfig const* maybe_config = nullptr) { // The functional version of this op does not do any profiling; use the profiler class below instead for // better performance. // Note that we can still add a heuristic here. switch (outDataType) { case at::ScalarType::Half: return fp8_rowwise_gemm_launch(mat1, mat2, mat1Scale, mat2Scale, to_userbuffers, maybe_config); #ifdef ENABLE_BF16 case at::ScalarType::BFloat16: return fp8_rowwise_gemm_launch<__nv_bfloat16>(mat1, mat2, mat1Scale, mat2Scale, to_userbuffers, maybe_config); #endif default: TORCH_CHECK(false, "Unsupported output dtype for FP8 block scaling GEMM"); } } class FP8RowwiseGemmRunner : public torch::CustomClassHolder { public: explicit FP8RowwiseGemmRunner(at::ScalarType outputDtype) : mOutputDtype(outputDtype) { if (outputDtype == at::ScalarType::Half) { mGemmRunner = std::make_unique>(); } #ifdef ENABLE_BF16 else if (outputDtype == at::ScalarType::BFloat16) { mGemmRunner = std::make_unique>(); } #endif else { C10_THROW_ERROR(NotImplementedError, "out_dtype must be one of fp16/bf16."); } mConfigs = mGemmRunner->getConfigs(); } at::Tensor runGemm(at::Tensor const& mat1, at::Tensor const& mat2, at::Tensor const& mat1Scale, at::Tensor const& mat2Scale, bool to_userbuffers, int64_t configIdx) const { tkc::CutlassGemmConfig const* config = nullptr; if (configIdx != -1) { TORCH_CHECK(configIdx >= 0 && configIdx < getNumConfigs()); config = &mConfigs.at(configIdx); } return fp8_rowwise_gemm_dispatch(mat1, mat2, mat1Scale, mat2Scale, mOutputDtype, to_userbuffers, config); } at::ScalarType getOutputDtype() const { return mOutputDtype; } int64_t getNumConfigs() const { return static_cast(mConfigs.size()); } private: std::shared_ptr mGemmRunner{nullptr}; std::vector mConfigs; at::ScalarType mOutputDtype; }; } // namespace torch_ext TORCH_LIBRARY_FRAGMENT(trtllm, m) { m.class_("FP8RowwiseGemmRunner") .def(torch::init()) .def("run_gemm", &torch_ext::FP8RowwiseGemmRunner::runGemm) .def("get_num_configs", &torch_ext::FP8RowwiseGemmRunner::getNumConfigs); }