#!/bin/bash #SBATCH -A # parameter #SBATCH -p # parameter #SBATCH -t 01:00:00 #SBATCH -N 1 #SBATCH --ntasks-per-node=2 #SBATCH -o logs/llmapi-distributed.out #SBATCH -e logs/llmapi-distributed.err #SBATCH -J llmapi-distributed-task ############################################################################## # OVERVIEW: # This script demonstrates running a custom LLM API Python script on SLURM # with distributed inference support. It executes quickstart_advanced.py with # tensor parallelism across multiple GPUs/nodes. # # WHAT TO MODIFY: # 1. SLURM Parameters (lines 2-9): # - Replace with your SLURM account name # - Replace with your SLURM partition name # - Adjust -N (number of nodes) based on your TP size # - Adjust --ntasks-per-node (GPUs per node) to match your setup # # 2. Environment Variables (set before running sbatch): # - CONTAINER_IMAGE: Docker image with TensorRT-LLM installed # - MOUNT_DIR: Host directory to mount in container # - MOUNT_DEST: Container mount destination path # - WORKDIR: Working directory inside container # - SOURCE_ROOT: Path to TensorRT-LLM source code # - PROLOGUE: Commands to run before main task (e.g., module loads) # - LOCAL_MODEL: Path to your pre-downloaded model directory # # 3. Script Configuration (lines 39, 51-54): # - Line 39: Change $script to point to your own Python script # - Line 52: Modify --model_dir to use your model path # - Line 53: Customize --prompt with your test prompt # - Line 54: Adjust --tp_size to match your node/GPU setup # # EXAMPLE USAGE: # export CONTAINER_IMAGE="nvcr.io/nvidia/tensorrt_llm:latest" # export LOCAL_MODEL="/path/to/llama-model" # sbatch llm_mgmn_llm_distributed.sh # # NOTE: This is a template - you can replace quickstart_advanced.py with any # LLM API Python script. The trtllm-llmapi-launch wrapper handles the # distributed execution setup automatically. ############################################################################## ### :section Slurm ### :title Run LLM-API with pytorch backend on Slurm ### :order 0 # NOTE, this feature is experimental and may not work on all systems. # The trtllm-llmapi-launch is a script that launches the LLM-API code on # Slurm-like systems, and can support multi-node and multi-GPU setups. # IMPORTANT: Total MPI processes (nodes × ntasks-per-node) must equal tp_size. # e.g. For tensor_parallel_size=16, you may use 2 nodes with 8 gpus for # each, or 4 nodes with 4 gpus for each or other combinations. # This docker image should have tensorrt_llm installed, or you need to install # it in the task. # The following variables are expected to be set in the environment: # You can set them via --export in the srun/sbatch command. # CONTAINER_IMAGE: the docker image to use, you'd better install tensorrt_llm in it, or install it in the task. # MOUNT_DIR: the directory to mount in the container # MOUNT_DEST: the destination directory in the container # WORKDIR: the working directory in the container # SOURCE_ROOT: the path to the TensorRT LLM source # PROLOGUE: the prologue to run before the script # LOCAL_MODEL: the local model directory to use, NOTE: downloading from HF is # not supported in Slurm mode, you need to download the model and put it in # the LOCAL_MODEL directory. # Adjust the paths to run export script=$SOURCE_ROOT/examples/llm-api/quickstart_advanced.py # Just launch the PyTorch example with trtllm-llmapi-launch command. srun -l \ --container-image=${CONTAINER_IMAGE} \ --container-mounts=${MOUNT_DIR}:${MOUNT_DEST} \ --container-workdir=${WORKDIR} \ --export=ALL \ --mpi=pmix \ bash -c " $PROLOGUE export PATH=$PATH:~/.local/bin trtllm-llmapi-launch python3 $script \ --model_dir $LOCAL_MODEL \ --prompt 'Hello, how are you?' \ --tp_size 2 \ --max_batch_size 256 "