import argparse import os import time import traceback from concurrent.futures import ThreadPoolExecutor, as_completed from transformers import AutoModelForCausalLM import tensorrt_llm from tensorrt_llm.llmapi import QuantConfig from tensorrt_llm.mapping import Mapping from tensorrt_llm.models import GPTJConfig, GPTJForCausalLM from tensorrt_llm.models.convert_utils import infer_dtype from tensorrt_llm.quantization import QuantAlgo def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--model_dir', type=str, default=None) parser.add_argument('--tp_size', type=int, default=1, help='N-way tensor parallelism size') parser.add_argument('--pp_size', type=int, default=1, help='N-way pipeline parallelism size') parser.add_argument( '--dtype', type=str, default='auto', choices=['auto', 'float16', 'bfloat16', 'float32'], help= "The data type for the model weights and activations if not quantized. " "If 'auto', the data type is automatically inferred from the source model; " "however, if the source dtype is float32, it is converted to float16.") parser.add_argument('--vocab_size', type=int, default=50400) parser.add_argument('--n_positions', type=int, default=2048) parser.add_argument('--n_layer', type=int, default=28) parser.add_argument('--n_head', type=int, default=16) parser.add_argument('--n_embd', type=int, default=4096) parser.add_argument('--norm_eps', type=float, default=1e-05) parser.add_argument('--rotary_dim', type=int, default=64) parser.add_argument( '--use_weight_only', default=False, action="store_true", help='Quantize weights for the various GEMMs to INT4/INT8.' 'See --weight_only_precision to set the precision') parser.add_argument( '--weight_only_precision', const='int8', type=str, nargs='?', default='int8', choices=['int8', 'int4'], help= 'Define the precision for the weights when using weight-only quantization.' 'You must also use --use_weight_only for that argument to have an impact.' ) parser.add_argument('--output_dir', type=str, default='tllm_checkpoint', help='The path to save the TensorRT LLM checkpoint') parser.add_argument( '--workers', type=int, default=1, help='The number of workers for converting checkpoint in parallel') args = parser.parse_args() return args def args_to_quant_config(args): quant_algo = None if args.use_weight_only and args.weight_only_precision == 'int8': quant_algo = QuantAlgo.W8A16 elif args.use_weight_only and args.weight_only_precision == 'int4': quant_algo = QuantAlgo.W4A16 return QuantConfig(quant_algo=quant_algo) def convert_and_save_hf(args): model_dir = args.model_dir world_size = args.tp_size * args.pp_size quant_config = args_to_quant_config(args) hf_model = AutoModelForCausalLM.from_pretrained(model_dir, dtype='auto', trust_remote_code=True) def convert_and_save_rank(args, rank): mapping = Mapping(world_size=world_size, rank=rank, tp_size=args.tp_size, pp_size=args.pp_size) model = GPTJForCausalLM.from_hugging_face(hf_model, args.dtype, mapping=mapping, quant_config=quant_config) model.save_checkpoint(args.output_dir, save_config=(rank == 0)) del model if args.workers == 1: for rank in range(world_size): convert_and_save_rank(args, rank) else: with ThreadPoolExecutor(max_workers=args.workers) as p: futures = [ p.submit(convert_and_save_rank, args, rank) for rank in range(world_size) ] exceptions = [] for future in as_completed(futures): try: future.result() except Exception as e: traceback.print_exc() exceptions.append(e) assert len( exceptions ) == 0, "Checkpoint conversion failed, please check error log." del hf_model def main(): print(tensorrt_llm.__version__) args = parse_arguments() tik = time.time() if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) if args.model_dir is None: config = GPTJConfig(architecture='GPTJForCausalLM', dtype=infer_dtype(args.dtype), num_hidden_layers=args.n_layer, num_attention_heads=args.n_head, hidden_size=args.n_embd, norm_epsilon=args.norm_eps, vocab_size=args.vocab_size, position_embedding_type='rope_gptj', max_position_embeddings=args.n_positions, hidden_act='gelu', rotary_dim=args.rotary_dim, mapping=Mapping(world_size=args.tp_size * args.pp_size, tp_size=args.tp_size, pp_size=args.pp_size), quantization=args_to_quant_config(args)) config.to_json_file(os.path.join(args.output_dir, 'config.json')) else: convert_and_save_hf(args) tok = time.time() t = time.strftime('%H:%M:%S', time.gmtime(tok - tik)) print(f'Total time of converting checkpoints: {t}') if __name__ == '__main__': main()