# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from defs.common import venv_check_call, venv_mpi_check_call from defs.conftest import get_sm_version, skip_fp8_pre_ada from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) @pytest.mark.skip_less_device_memory(50000) @pytest.mark.parametrize("qformat", ["full_prec", "fp8", "int4_awq"]) @pytest.mark.parametrize("dtype", ["float16", "bfloat16"]) def test_llm_nemotron_3_8b_1gpu(nemotron_example_root, llm_nemotron_3_8b_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, dtype, qformat): print("Converting checkpoint...") model_name = 'nemotron-3-8b' ckpt_dir = f"{cmodel_dir}/{model_name}/{qformat}/1-gpu" quantize_cmd = [ f"{nemotron_example_root}/../quantization/quantize.py", f"--nemo_ckpt_path={llm_nemotron_3_8b_model_root}", f"--calib_dataset={llm_datasets_root}/cnn_dailymail", "--batch_size=64", f"--dtype={dtype}", f"--qformat={qformat}", f"--output_dir={ckpt_dir}", ] venv_check_call(llm_venv, quantize_cmd) print("Building engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", "--max_batch_size=8", "--max_input_len=924", "--max_seq_len=1024", f"--gpt_attention_plugin={dtype}", f"--gemm_plugin={dtype}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run engines...") summary_cmd = [ f"{nemotron_example_root}/../summarize.py", "--test_trt_llm", f"--engine_dir={engine_dir}", f"--vocab_file={ckpt_dir}/tokenizer.model", "--no_add_special_tokens", "--batch_size=8", "--max_ite=40", "--check_accuracy", "--tensorrt_llm_rouge1_threshold=18", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] venv_check_call(llm_venv, summary_cmd) @pytest.mark.skip_less_device_memory(50000) @pytest.mark.parametrize("qformat", ["full_prec", "fp8", "int4_awq"]) @pytest.mark.parametrize("dtype", ["float16", "bfloat16"]) def test_llm_nemotron_4_15b_1gpu(nemotron_example_root, llm_nemotron_4_15b_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, dtype, qformat): skip_fp8_pre_ada(use_fp8=qformat == "fp8") print("Converting checkpoint...") model_name = 'nemotron-4-15b' ckpt_dir = f"{cmodel_dir}/{model_name}/{qformat}/1-gpu" quantize_cmd = [ f"{nemotron_example_root}/../quantization/quantize.py", f"--nemo_ckpt_path={llm_nemotron_4_15b_model_root}", f"--calib_dataset={llm_datasets_root}/cnn_dailymail", "--batch_size=64", f"--dtype={dtype}", f"--qformat={qformat}", f"--output_dir={ckpt_dir}", ] venv_check_call(llm_venv, quantize_cmd) print("Building engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", "--max_batch_size=8", "--max_input_len=924", "--max_seq_len=1024", f"--gpt_attention_plugin={dtype}", f"--gemm_plugin={dtype}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run engines...") summary_cmd = [ f"{nemotron_example_root}/../summarize.py", "--test_trt_llm", f"--engine_dir={engine_dir}", f"--vocab_file={ckpt_dir}/tokenizer.model", "--no_add_special_tokens", "--batch_size=8", "--max_ite=40", "--check_accuracy", "--tensorrt_llm_rouge1_threshold=18", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] venv_check_call(llm_venv, summary_cmd) @pytest.mark.skip_less_device(2) @pytest.mark.skip_less_device_memory(50000) @pytest.mark.parametrize("qformat", ["full_prec", "fp8", "int4_awq"]) @pytest.mark.parametrize("dtype", ["float16", "bfloat16"]) def test_llm_nemotron_4_15b_2gpus(nemotron_example_root, llm_nemotron_4_15b_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, dtype, qformat): skip_fp8_pre_ada(use_fp8=qformat == 'fp8') print("Converting checkpoint...") tp_size, pp_size = 2, 1 world_size = tp_size * pp_size model_name = 'nemotron-4-15b' ckpt_dir = f"{cmodel_dir}/{model_name}/{qformat}/tp{tp_size}pp{pp_size}" quantize_cmd = [ f"{nemotron_example_root}/../quantization/quantize.py", f"--nemo_ckpt_path={llm_nemotron_4_15b_model_root}", f"--calib_dataset={llm_datasets_root}/cnn_dailymail", "--batch_size=64", f"--dtype={dtype}", f"--qformat={qformat}", f"--calib_tp_size={tp_size}", f"--tp_size={tp_size}", f"--output_dir={ckpt_dir}", ] venv_mpi_check_call( llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"], quantize_cmd) print("Building engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", "--max_batch_size=8", "--max_input_len=924", "--max_seq_len=1024", f"--gpt_attention_plugin={dtype}", f"--gemm_plugin={dtype}", f"--workers={world_size}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run engines...") summary_cmd = [ f"{nemotron_example_root}/../summarize.py", "--test_trt_llm", f"--engine_dir={engine_dir}", f"--vocab_file={ckpt_dir}/tokenizer.model", "--no_add_special_tokens", "--batch_size=8", "--max_ite=40", "--check_accuracy", "--tensorrt_llm_rouge1_threshold=18", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] venv_mpi_check_call( llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"], summary_cmd)