# -*- coding: utf-8 -*- import json import numpy as np import triton_python_backend_utils as pb_utils from transformers import AutoTokenizer class TritonPythonModel: """Your Python model must use the same class name. Every Python model that is created must have "TritonPythonModel" as the class name. """ def initialize(self, args): """`initialize` is called only once when the model is being loaded. Implementing `initialize` function is optional. This function allows the model to initialize any state associated with this model. Parameters ---------- args : dict Both keys and values are strings. The dictionary keys and values are: * model_config: A JSON string containing the model configuration * model_instance_kind: A string containing model instance kind * model_instance_device_id: A string containing model instance device ID * model_repository: Model repository path * model_version: Model version * model_name: Model name """ # Parse model configs model_config = json.loads(args['model_config']) tokenizer_dir = model_config['parameters']['tokenizer_dir'][ 'string_value'] self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, legacy=False, padding_side="left", trust_remote_code=True) if not self.tokenizer.pad_token: self.tokenizer.pad_token = self.tokenizer.eos_token # Parse model output configs output_config = pb_utils.get_output_config_by_name( model_config, "OUTPUT") # Convert Triton types to numpy types self.output_dtype = pb_utils.triton_string_to_numpy( output_config['data_type']) def execute(self, requests): """`execute` must be implemented in every Python model. `execute` function receives a list of pb_utils.InferenceRequest as the only argument. This function is called when an inference is requested for this model. Depending on the batching configuration (e.g. Dynamic Batching) used, `requests` may contain multiple requests. Every Python model, must create one pb_utils.InferenceResponse for every pb_utils.InferenceRequest in `requests`. If there is an error, you can set the error argument when creating a pb_utils.InferenceResponse. Parameters ---------- requests : list A list of pb_utils.InferenceRequest Returns ------- list A list of pb_utils.InferenceResponse. The length of this list must be the same as `requests` """ responses = [] # Every Python backend must iterate over everyone of the requests # and create a pb_utils.InferenceResponse for each of them. for idx, request in enumerate(requests): # Get input tensors tokens_batch = pb_utils.get_input_tensor_by_name( request, 'TOKENS_BATCH').as_numpy() # Reshape Input # tokens_batch = tokens_batch.reshape([-1, tokens_batch.shape[0]]) # tokens_batch = tokens_batch.T # Postprocessing output data. outputs = self._postprocessing(tokens_batch) # Create output tensors. You need pb_utils.Tensor # objects to create pb_utils.InferenceResponse. output_tensor = pb_utils.Tensor( 'OUTPUT', np.array(outputs).astype(self.output_dtype)) # Create InferenceResponse. You can set an error here in case # there was a problem with handling this inference request. # Below is an example of how you can set errors in inference # response: # # pb_utils.InferenceResponse( # output_tensors=..., TritonError("An error occurred")) inference_response = pb_utils.InferenceResponse( output_tensors=[output_tensor]) responses.append(inference_response) # You should return a list of pb_utils.InferenceResponse. Length # of this list must match the length of `requests` list. return responses def finalize(self): """`finalize` is called only once when the model is being unloaded. Implementing `finalize` function is optional. This function allows the model to perform any necessary clean ups before exit. """ print('Cleaning up...') def _postprocessing(self, tokens_batch): outputs = [] for beam_tokens in tokens_batch: for tokens in beam_tokens: output = self.tokenizer.decode(tokens) outputs.append(output.encode('utf8')) return outputs