/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "cuda_runtime_api.h" #include #include #include #include #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/common/cudaDriverWrapper.h" #include "tensorrt_llm/common/envUtils.h" #include "tensorrt_llm/common/logger.h" #include "cubin/kernelMetaInfo.h" #include "fmhaRunnerParams.h" #include "kernelParams.h" namespace tc = tensorrt_llm::common; namespace tensorrt_llm { namespace kernels { //////////////////////////////////////////////////////////////////////////////////////////////////// class TllmGenFmhaKernel { public: using KernelMeta = TllmGenFmhaKernelMetaInfo; using RunnerParams = TllmGenFmhaRunnerParams; using SelectKernelParams = TllmGenSelectKernelParams; // Ctor. TllmGenFmhaKernel(KernelMeta const* pMetaStart, unsigned int nMetaCount, Data_type dtypeQ, Data_type dtypeKv, Data_type dtypeOut, unsigned int smArch) : mDtypeQ(dtypeQ) , mDtypeKv(dtypeKv) , mDtypeOut(dtypeOut) , mDriver(tensorrt_llm::common::CUDADriverWrapper::getInstance()) , mKernelMeta(pMetaStart) , mKernelMetaCount(nMetaCount) , mSM(smArch) { } void loadKernels() { // Build a lookup map for all kernels. for (unsigned int i = 0; i < mKernelMetaCount; ++i) { auto const& kernelMeta = mKernelMeta[i]; if (static_cast(kernelMeta.mSM) == mSM && kernelMeta.mDataTypeQ == mDtypeQ && kernelMeta.mDataTypeKv == mDtypeKv && kernelMeta.mDataTypeO == mDtypeOut) { // Load CUmodules CUmodule hmod{0}; auto findModuleIter = mModules.find(kernelMeta.mCubin); if (findModuleIter != mModules.end()) { hmod = findModuleIter->second; } else { TLLM_CU_CHECK(mDriver->cuModuleLoadData(&hmod, kernelMeta.mCubin)); mModules.insert(std::make_pair(kernelMeta.mCubin, hmod)); } // Build a hash map, which maps from kernel meta info to kernel index KernelInfo funcInfo; funcInfo.mMetaInfoIndex = i; TLLM_CU_CHECK(mDriver->cuModuleGetFunction(&funcInfo.mDeviceFunction, hmod, kernelMeta.mFuncName)); if (kernelMeta.mSharedMemBytes >= 48 * 1024) { TLLM_CU_CHECK(mDriver->cuFuncSetAttribute(funcInfo.mDeviceFunction, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, kernelMeta.mSharedMemBytes)); } // Make sure the hashIds are not duplicated. TLLM_CHECK_WITH_INFO(mFunctions.find(hashID(kernelMeta)) == mFunctions.end(), "The kernel's hashId has conflicts with others."); mFunctions.insert(std::make_pair(hashID(kernelMeta), funcInfo)); } } } inline uint64_t hashID(int qkvLayout, int maskType, int kernelType, int scheduler, int multiCtasKvMode, int headDimPerCtaV, int headDimQk, int headDimV, int tileSizeKv, int numTokensPerPage, int maxNumHeadsQPerKvInCta, bool reuseSmemKForV, bool uses2CtaMma) const { TLLM_CHECK_WITH_INFO((headDimPerCtaV >= 32) && (headDimQk >= 32) && (headDimV >= 32) && (headDimPerCtaV <= 2048) && (headDimQk <= 2048) && (headDimV <= 2048) && (numTokensPerPage <= 128), "Expect (32 <= headDim <= 2048) && (numTokensPerPage <= 128), got headDimPerCtaV=%d, headDimQk=%d, " "headDimV=%d, numTokensPerPage=%d", headDimPerCtaV, headDimQk, headDimV, numTokensPerPage); TLLM_CHECK_WITH_INFO(maxNumHeadsQPerKvInCta <= 128, "The maxNumHeadsQPerKvInCta <= 128 is required."); TLLM_CHECK_WITH_INFO(tileSizeKv == 64 || tileSizeKv == 128, "The tileSizeKv must be 64 or 128."); // Format of the hash key: // Bit 0 - 3 : qkvLayout. // Bit 4 - 7 : maskType. // Bit 8 - 11: kernelType. // Bit 12 - 15: tileScheduler. // Bit 16 - 16: multiCtasKvMode. // Bit 17 - 23: (headDimPerCtaV >> 5). // Bit 24 - 30: (headDimQk >> 5). // Bit 31 - 37: (headDimV >> 5). // Bit 38 - 39: (tileSizeKv >> 6). // Bit 40 - 47: numTokensPerPage. // Bit 48 - 55: maxNumHeadsQPerKvInCta. // Bit 56 - 56: reuseSmemKForV. // Bit 57 - 57: uses2CtaMma. return (static_cast(qkvLayout) << 0) | (static_cast(maskType) << 4) | (static_cast(kernelType) << 8) | (static_cast(scheduler) << 12) | (static_cast(multiCtasKvMode) << 16) | (static_cast(headDimPerCtaV >> 5) << 17) | (static_cast(headDimQk >> 5) << 24) | (static_cast(headDimV >> 5) << 31) | (static_cast(tileSizeKv >> 6) << 38) | (static_cast(numTokensPerPage) << 40) | (static_cast(maxNumHeadsQPerKvInCta) << 48) | (static_cast(reuseSmemKForV) << 56) | (static_cast(uses2CtaMma) << 57); } uint64_t hashID(KernelMeta const& kernelMeta) const { return hashID(kernelMeta.mQkvLayout, kernelMeta.mMaskType, kernelMeta.mKernelType, kernelMeta.mTileScheduler, kernelMeta.mMultiCtasKvMode, kernelMeta.mHeadDimPerCtaV, kernelMeta.mHeadDimQk, kernelMeta.mHeadDimV, kernelMeta.mTileSizeKv, kernelMeta.mNumTokensPerPage, kernelMeta.mMaxNumHeadsQPerKvInCta, kernelMeta.mReuseSmemKForV, kernelMeta.m2CtaMma); } std::pair checkIfKernelExist(RunnerParams const& params) const { // The selectKernelParams that might be updated. SelectKernelParams selectKernelParams{params}; auto [hashId, info] = hashFromRunnerParams(params, selectKernelParams); return std::make_pair(mFunctions.find(hashId) != mFunctions.end(), info); } void run(RunnerParams const& params) const { // The selectKernelParams that might be updated. SelectKernelParams selectKernelParams{params}; // The iteration index (used to detect a deadlock of selecting new kernels). int selectKernelIter = 0; // While loop. while (true) { // Any value >= 2 should work here, but we set it larger in case that we might have more complicated // heuristic in the future. TLLM_CHECK_WITH_INFO(selectKernelIter < 8, "A deadlock is detected when selecting trtllm-gen kernels."); auto [hashId, info] = hashFromRunnerParams(params, selectKernelParams); auto const findIter = mFunctions.find(hashId); // Add debug info when kernels are not found. TLLM_CHECK_WITH_INFO(findIter != mFunctions.end(), "Trtllm-gen kernels not found: " + info); auto const& kernelMeta = mKernelMeta[findIter->second.mMetaInfoIndex]; const CUfunction func = findIter->second.mDeviceFunction; // Compute the number of CTAs in X, Y and Z dimension. auto [numCtasX, numCtasY, numCtasZ] = computeNumCtas(params, kernelMeta, selectKernelParams); // Need to select a new kernel if mSelectNewKernel is true. if (selectKernelParams.mSelectNewKernel) { selectKernelIter++; continue; } // Prepare the kernel parameters. auto kernelParams = KernelParams::setKernelParams(params, kernelMeta); // Prepare kernel parameters list for cuLaunchKernelEx. void* kernelParamsList[] = {&kernelParams}; CUlaunchConfig launch_config; launch_config.blockDimX = kernelMeta.mThreadsPerCTA; launch_config.blockDimY = 1; launch_config.blockDimZ = 1; launch_config.gridDimX = numCtasX; launch_config.gridDimY = numCtasY; launch_config.gridDimZ = numCtasZ; launch_config.hStream = params.stream; launch_config.sharedMemBytes = kernelMeta.mSharedMemBytes; // Debug info. TLLM_LOG_DEBUG("TRTLLM-Gen launch info: kernelName = %s", kernelMeta.mFuncName); TLLM_LOG_DEBUG( "TRTLLM-Gen launch info: maxSeqLenQ = %d, " "maxSeqLenKv = %d, " "numHeadsQ = %d, " "numHeadsKv = %d, batchSize = %d, kernelType = %d", params.mMaxSeqLenQ, params.mMaxSeqLenKv, params.mNumHeadsQ, params.mNumHeadsKv, params.mBatchSize, static_cast(params.mKernelType)); TLLM_LOG_DEBUG("TRTLLM-Gen launch info: numCtasX = %d, numCtasY = %d, numCtasZ = %d, uses2CtaMma = %d", numCtasX, numCtasY, numCtasZ, selectKernelParams.mUses2CtaMma); CUlaunchAttribute launch_attribute[3]; launch_attribute[0].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION; launch_attribute[0].value.clusterDim.x = selectKernelParams.mUses2CtaMma ? 2 : 1; launch_attribute[0].value.clusterDim.y = 1; launch_attribute[0].value.clusterDim.z = 1; launch_attribute[1].id = CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE; launch_attribute[1].value.clusterSchedulingPolicyPreference = selectKernelParams.mUses2CtaMma ? CU_CLUSTER_SCHEDULING_POLICY_SPREAD : CU_CLUSTER_SCHEDULING_POLICY_DEFAULT; launch_attribute[2].id = CU_LAUNCH_ATTRIBUTE_PROGRAMMATIC_STREAM_SERIALIZATION; launch_attribute[2].value.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL(); launch_config.attrs = launch_attribute; launch_config.numAttrs = 3; TLLM_CU_CHECK(mDriver->cuLaunchKernelEx(&launch_config, func, kernelParamsList, nullptr)); // Break the while op. break; } } private: // Is it MLA generation kernel ? inline bool isMlaGenKernel(RunnerParams const& params) const { return params.mHeadDimQk == 576 && params.mHeadDimV == 512; } // Compute the number of CTAs in X, Y and Z dimension. std::tuple computeNumCtas( RunnerParams const& params, KernelMeta const& kernelMeta, SelectKernelParams& selectKernelParams) const { // Do we need to select a new kernel ? selectKernelParams.mSelectNewKernel = false; // The number of Ctas per Q sequence. int numCtasPerSeqQ = (params.mMaxSeqLenQ + kernelMeta.mStepQ - 1) / kernelMeta.mStepQ; // Compute the grid dimension Y. int numHeadsPerCta = kernelMeta.mGroupsHeadsQ ? std::min(params.mNumHeadsQPerKv, kernelMeta.mMaxNumHeadsQPerKvInCta) : 1; int numCtasForAllHeadsQ = params.mNumHeadsQ / numHeadsPerCta; TLLM_CHECK_WITH_INFO( numHeadsPerCta * numCtasForAllHeadsQ == params.mNumHeadsQ, "The numHeadsQ/numHeadsKv is not supported."); // Take the number of headDim CTAs. TLLM_CHECK_WITH_INFO( kernelMeta.mHeadDimV % selectKernelParams.mHeadDimPerCtaV == 0, "The headDimPerCtaV is not supported."); int numCtasPerHeadDim = kernelMeta.mHeadDimV / selectKernelParams.mHeadDimPerCtaV; // Compute the current numCtasX. int numCtasX = numCtasPerSeqQ; // Update the numCtasY. int numCtasY = numCtasForAllHeadsQ * numCtasPerHeadDim; // Compute the grid dimension Z. int numCtasZ = params.mBatchSize; // MTP kernels use different blockY to process MTP tokens. if (isMlaGenKernel(params) && params.mMaxSeqLenQ > 1) { numCtasZ *= params.mMaxSeqLenQ; numCtasPerSeqQ = 1; } // The 2CtaMma kernels will use 2 Ctas in the x dimension (only used by MLA generation kernels) for heads, // so numCtasPerHeadDim and numCtasForAllHeadsQ will be handled by the 2Ctas in the x dimension. if (isMlaGenKernel(params) && selectKernelParams.mUses2CtaMma) { TLLM_CHECK_WITH_INFO( numCtasForAllHeadsQ == 2 && numCtasPerHeadDim == 2, "Internal error: numCtasPerHeadDim should be 2."); numCtasX *= 2; numCtasY /= (numCtasForAllHeadsQ * numCtasPerHeadDim); } // First split the seqLenKv into multiple CTAs if the utilization is not full. // The number of Ctas per KV sequence. int numCtasPerSeqKv = 1; // Consider the multiCtasKvMode for better GPU utilization. if (selectKernelParams.mMultiCtasKvMode) { // The maximum number Ctas per Kv sequence, which makes sure that each CtaKv has work to do. int const maxNumCtasPerSeqKv = (params.mMaxSeqLenKv + kernelMeta.mStepKv - 1) / kernelMeta.mStepKv; // Compute numCtasPerSeqKv. numCtasPerSeqKv = std::min( maxNumCtasPerSeqKv, int32_t(params.mMultiProcessorCount / (numCtasPerSeqQ * numCtasY * numCtasZ))); // The current total number of CTAs. int totalNumCtas = numCtasPerSeqQ * numCtasPerSeqKv * numCtasZ * numCtasY; // Reset multiCtasKvMode to false. if (numCtasPerSeqKv <= 1) { selectKernelParams.mMultiCtasKvMode = false; // Enable the persistent scheduler for better performance. selectKernelParams.mTileScheduler = TileScheduler::Persistent; // Need to select a different kernel. selectKernelParams.mSelectNewKernel = true; } else if (totalNumCtas < params.mMultiProcessorCount && isMlaGenKernel(params) && selectKernelParams.mTileSizeKv == 128 && tensorrt_llm::common::getEnvUseTileSizeKv64ForTrtllmGen()) { // Use smaller tileSizeKv to fully utilize the SMs. selectKernelParams.mTileSizeKv = 64; // Need to select a different kernel. selectKernelParams.mSelectNewKernel = true; } // Add the debug info when multiCtasKvMode is enabled. if (numCtasPerSeqKv > 1) { TLLM_LOG_DEBUG( "TRTLLM-Gen launch info: multiCtasKvMode is enabled with tileSizeKv = %d, numCtasPerSeqKv = %d, " "numCtasPerSeqQ = " "%d, numCtasY = %d, numCtasZ = %d", selectKernelParams.mTileSizeKv, numCtasPerSeqKv, numCtasPerSeqQ, numCtasY, numCtasZ); } } // Update numCtasX. numCtasX *= numCtasPerSeqKv; // Compute the current number of CTAs in total. int totalNumCtas = numCtasX * numCtasZ * numCtasY; // Then split the headDimV into multiple CTAs if there are still unused SMs. if (isMlaGenKernel(params) && isSwapsMmaAbForGenerationKernel(selectKernelParams.mKernelType) && !selectKernelParams.mReuseSmemKForV && !selectKernelParams.mSelectNewKernel) { // Split the headDimV into multiple CTAs if the utilization is not full. // It doesn't work with reuseSmemKForV currently. // TODO: find better heuristic of splitting headDimV across multiple CTAs. if (selectKernelParams.mHeadDimPerCtaV == 512 && totalNumCtas < params.mMultiProcessorCount) { // Use smaller headDimPerCtaV to fully utilize the SMs. selectKernelParams.mHeadDimPerCtaV = totalNumCtas * 2 < params.mMultiProcessorCount ? 128 : 256; // Need to select a different kernel. selectKernelParams.mSelectNewKernel = true; } // TODO: find better heuristic of enabling reuseSmemKForV. else if (selectKernelParams.mHeadDimPerCtaV == 512 && numCtasForAllHeadsQ == 1) { // It seems that enabling reuseSmemKForV has worse perf when there are multiple CTAs for different // headsQ. // Fp16/bf16 MLA generation kernels don't support 128 tileSizeKv + reuseSmemKForV. if (!(mDtypeQ == DATA_TYPE_FP16 || mDtypeQ == DATA_TYPE_BF16) || selectKernelParams.mTileSizeKv == 64) { selectKernelParams.mReuseSmemKForV = true; // Need to select a different kernel. selectKernelParams.mSelectNewKernel = true; } } } // Return the number of CTAs for X, Y and Z dimension. return std::make_tuple(numCtasX, numCtasY, numCtasZ); } std::pair hashFromRunnerParams( RunnerParams const& params, SelectKernelParams& selectKernelParams) const { // The updated kernel type. FmhaKernelType& kernelType = selectKernelParams.mKernelType; // Generation kernelType will use either SwapsMmaAbForGeneration or KeepsMmaAbForGeneration. if (isGenerationKernel(params.mKernelType) && isMlaGenKernel(params)) { // We use the low-latency kernel (SwapsMmaAbForGeneration with tileSizeQ = 16) when any of the following // conditions are met: // 1. The number of headsQPerKv is <= 32. // 2. BatchSize x seqLenQ (numMtpTokens) x ceil(headsQPerKv, 16) <= the number of multiprocessors. if (params.mNumHeadsQPerKv <= 32 || static_cast(params.mBatchSize * params.mMaxSeqLenQ * tc::divUp(params.mNumHeadsQPerKv, 16)) <= params.mMultiProcessorCount) { kernelType = FmhaKernelType::SwapsMmaAbForGeneration; } else { // Otherwise, we use the high-throughput kernel (KeepsMmaAbForGeneration with tileSizeQ = 64). kernelType = FmhaKernelType::KeepsMmaAbForGeneration; // Uses 2 CTA MMA if numHeadsQPerKv is 128. if (params.mNumHeadsQPerKv == 128) { selectKernelParams.mUses2CtaMma = true; // Each Cta only handles 256 headDimV. selectKernelParams.mHeadDimPerCtaV = 256; } // Set the multiCtasKvMode to false and use the persistent scheduler for high-throughput generation // kernels. selectKernelParams.mMultiCtasKvMode = false; selectKernelParams.mTileScheduler = TileScheduler::Persistent; } } else if (isGenerationKernel(params.mKernelType)) { kernelType = (params.mNumHeadsQPerKv <= 16 && params.mHeadDimQk != 32) ? FmhaKernelType::SwapsMmaAbForGeneration : FmhaKernelType::KeepsMmaAbForGeneration; } // The maximum number of headsQPerKv that the kernel can support in one Cta. int maxNumHeadsQPerKvInCta = 1; if (isSwapsMmaAbForGenerationKernel(kernelType)) { // Set the corresponding maxNumHeadsQPerKvInCta (tileSizeQ) for low-latency generation kernels. maxNumHeadsQPerKvInCta = (params.mNumHeadsQPerKv <= 8) ? 8 : 16; TLLM_CHECK_WITH_INFO((maxNumHeadsQPerKvInCta == 8 || maxNumHeadsQPerKvInCta == 16) && (params.mNumHeadsQPerKv < maxNumHeadsQPerKvInCta || params.mNumHeadsQPerKv % maxNumHeadsQPerKvInCta == 0), "Not supported"); } else if (isKeepsMmaAbForGenerationKernel(kernelType)) { // Use the maxNumHeadsQPerKvInCta (tileSizeQ) = 64 for MLA high-throughput generation kernels. maxNumHeadsQPerKvInCta = isMlaGenKernel(params) ? 64 : 32; TLLM_CHECK_WITH_INFO((params.mNumHeadsQPerKv < maxNumHeadsQPerKvInCta || params.mNumHeadsQPerKv % maxNumHeadsQPerKvInCta == 0), "Not supported"); } else if (isContextKernel(kernelType)) { TLLM_CHECK_WITH_INFO(maxNumHeadsQPerKvInCta == 1, "Not supported"); } // The mask type. TrtllmGenAttentionMaskType maskType = params.mMaskType; // Enable sliding window causal if the max kv sequence length exceeds attention window size. if (params.mAttentionWindowSize < params.mMaxSeqLenKv && maskType == TrtllmGenAttentionMaskType::Causal) { maskType = TrtllmGenAttentionMaskType::SlidingWindowCausal; } // NumTokensPerPage is set to 0 when not selecting pagedKv-layout kernels. int numTokensPerPage = (!isPagedKv(params.mQkvLayout)) ? 0 : params.mNumTokensPerPage; // Debug info. std::string info = "qkvLayout=" + std::to_string(static_cast(params.mQkvLayout)) + ", maskType=" + std::to_string(static_cast(maskType)) + ", kernelType=" + std::to_string(static_cast(kernelType)) + ", tileScheduler=" + std::to_string(static_cast(selectKernelParams.mTileScheduler)) + ", multiCtasKvMode=" + std::to_string(selectKernelParams.mMultiCtasKvMode) + ", headDimPerCtaV=" + std::to_string(selectKernelParams.mHeadDimPerCtaV) + ", headDimQk=" + std::to_string(params.mHeadDimQk) + ", headDimV=" + std::to_string(params.mHeadDimV) + ", tileSizeKv=" + std::to_string(selectKernelParams.mTileSizeKv) + ", numTokensPerPage=" + std::to_string(numTokensPerPage) + ", maxNumHeadsQPerKvInCta=" + std::to_string(maxNumHeadsQPerKvInCta) + ", reuseSmemKForV=" + std::to_string(selectKernelParams.mReuseSmemKForV) + ", uses2CtaMma=" + std::to_string(selectKernelParams.mUses2CtaMma); TLLM_LOG_DEBUG("Searching for kernel traits: " + info); return std::make_pair( hashID(static_cast(params.mQkvLayout), static_cast(maskType), static_cast(kernelType), static_cast(selectKernelParams.mTileScheduler), selectKernelParams.mMultiCtasKvMode, selectKernelParams.mHeadDimPerCtaV, params.mHeadDimQk, params.mHeadDimV, selectKernelParams.mTileSizeKv, numTokensPerPage, maxNumHeadsQPerKvInCta, selectKernelParams.mReuseSmemKForV, selectKernelParams.mUses2CtaMma), info); } Data_type mDtypeQ, mDtypeKv, mDtypeOut; std::shared_ptr mDriver; KernelMeta const* mKernelMeta; unsigned int mKernelMetaCount; unsigned int mSM; std::unordered_map mModules; struct KernelInfo { unsigned int mMetaInfoIndex; CUfunction mDeviceFunction; }; std::unordered_map mFunctions; }; //////////////////////////////////////////////////////////////////////////////////////////////////// class TllmFmhaKernelFactory { public: using KernelType = TllmGenFmhaKernel; KernelType const* getKernels(const typename KernelType::KernelMeta* pKernelList, unsigned int nbKernels, Data_type dtypeQ, Data_type dtypeKv, Data_type dtypeOut, unsigned int sm) { static std::mutex s_mutex; std::lock_guard lg(s_mutex); auto const id = hashID(dtypeQ, dtypeKv, dtypeOut, sm); auto const findIter = mKernels.find(id); if (findIter == mKernels.end()) { KernelType* newKernel = new KernelType{pKernelList, nbKernels, dtypeQ, dtypeKv, dtypeOut, sm}; newKernel->loadKernels(); mKernels.insert(std::make_pair(id, std::unique_ptr(newKernel))); return newKernel; } return findIter->second.get(); } static TllmFmhaKernelFactory& Get() { int deviceId; cudaGetDevice(&deviceId); static std::unique_ptr sFactory[32] = {nullptr}; if (sFactory[deviceId] == nullptr) { TLLM_CHECK_WITH_INFO(deviceId < 32, "Invalid deviceId %d", deviceId); sFactory[deviceId] = std::make_unique(TllmFmhaKernelFactory()); } return *(sFactory[deviceId]); } private: TllmFmhaKernelFactory() = default; inline uint64_t hashID(Data_type dtypeQ, Data_type dtypeKv, Data_type dtypeOut, unsigned int sm) const { return static_cast(sm) | static_cast(dtypeQ) << 16 | static_cast(dtypeKv) << 20 | static_cast(dtypeOut) << 24; } std::unordered_map> mKernels; }; inline TllmGenFmhaKernel const* getTllmFmhaKernels( Data_type dtypeQ, Data_type dtypeKv, Data_type dtypeOut, unsigned int sm) { #ifndef EXCLUDE_SM_100 return TllmFmhaKernelFactory::Get().getKernels(sTllmGenFmhaKernelMetaInfos, sizeof(sTllmGenFmhaKernelMetaInfos) / sizeof(sTllmGenFmhaKernelMetaInfos[0]), dtypeQ, dtypeKv, dtypeOut, sm); #else return nullptr; #endif // EXCLUDE_SM_100 } } // namespace kernels } // namespace tensorrt_llm