# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import pandas sys.path.append(f"{os.path.dirname(__file__)}/..") from accuracy_core import compute_threshold if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--num_total", type=int, default=14042) parser.add_argument("--sigma", type=float, default=50) parser.add_argument("--beta", type=float, default=0.2) args = parser.parse_args() # MMLU # num_total = 14042 # sigma = 49 # CNN Dailymail # num_total = 11490 # sigma = 11.06 data = [] for alpha in [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2]: num_samples = 32 while num_samples <= args.num_total: threshold, theta = compute_threshold(num_samples, 0, sigma=args.sigma, alpha=alpha, beta=args.beta) data.append([alpha, num_samples, threshold, theta]) num_samples *= 2 threshold, theta = compute_threshold(args.num_total, 0, args.sigma, alpha, args.beta) data.append([alpha, args.num_total, threshold, theta]) df = pandas.DataFrame( data, columns=['alpha', 'num_samples', 'threshold', 'theta']) df = df.set_index(['alpha', 'num_samples']).unstack() print("===========================================================\n" "= THETA (MINIMUM DETECTABLE EFFECT)\n" "===========================================================") print(df['theta']) print("===========================================================\n" "= GAMMA - REFERENCE\n" "===========================================================") print(df['threshold'])