# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv from copy import deepcopy import pytest from defs.common import convert_weights, venv_check_call from defs.conftest import get_device_memory, skip_post_blackwell from defs.trt_test_alternative import check_call # TODO: remove skip after enable Blackwell for Speculative Decoding @skip_post_blackwell @pytest.mark.parametrize("batch_size", [1, 2], ids=['bs1', 'bs2']) @pytest.mark.parametrize("data_type", ['float16']) @pytest.mark.parametrize("draft_len", [4, 8], ids=['draft_len_4', 'draft_len_8']) @pytest.mark.parametrize("use_logits", [False, True], ids=['use_tokens', 'use_logits']) @pytest.mark.parametrize("use_py_session", [False], ids=["use_cpp_session"]) @pytest.mark.parametrize("draft_target_model_roots", ["gpt2", "llama_v2"], indirect=True) @pytest.mark.parametrize("streaming", [False, True], ids=["no_streaming", "streaming"]) def test_llm_draft_target_model_1gpu(batch_size, data_type, draft_len, use_logits, use_py_session, draft_target_model_roots, streaming, draft_target_model_example_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir): if "llama" in draft_target_model_roots[1]: if get_device_memory() < 80000: pytest.skip("GPU memory is insufficient.") model_name = "draft_target_model" print("Build checkpoint ...") model_dir = convert_weights(llm_venv=llm_venv, example_root=draft_target_model_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=draft_target_model_roots[1], data_type=data_type) print("Build engines ...") draft_engine_dir = engine_dir + "-draft" target_engine_dir = engine_dir + "-target" baseline_engine_dir = engine_dir + "-baseline" common_build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--max_batch_size={batch_size}", f"--max_beam_width=1", "--max_input_len=1024", "--max_seq_len=1536", "--use_paged_context_fmha=enable", f"--gpt_attention_plugin={data_type}", f"--gemm_plugin={data_type}", "--gather_generation_logits", ] draft_model_build_cmd = deepcopy(common_build_cmd) draft_model_build_cmd.extend([ f"--output_dir={draft_engine_dir}", ]) target_model_build_cmd = deepcopy(common_build_cmd) target_model_build_cmd.extend([ f"--output_dir={target_engine_dir}", "--speculative_decoding_mode=draft_tokens_external", f"--max_draft_len={draft_len}", ]) baseline_model_build_cmd = deepcopy(common_build_cmd) baseline_model_build_cmd.extend([ f"--output_dir={baseline_engine_dir}", ]) check_call(" ".join(draft_model_build_cmd), shell=True, env=llm_venv._new_env) check_call(" ".join(target_model_build_cmd), shell=True, env=llm_venv._new_env) check_call(" ".join(baseline_model_build_cmd), shell=True, env=llm_venv._new_env) print("Run inferences ...") draft_model_config = f"[{draft_len},[0],[0],{use_logits}]" common_run_cmd = [ f"{draft_target_model_example_root}/../run.py", f"--tokenizer_dir={draft_target_model_roots[1]}", "--max_output_len=64", "--kv_cache_enable_block_reuse", "--kv_cache_free_gpu_memory_fraction=0.25", ] if streaming: common_run_cmd.extend(["--streaming", "--streaming_interval=1"]) if batch_size == 1: common_run_cmd.extend(["--input_text", "'How are you?'"]) elif batch_size == 2: common_run_cmd.extend(["--input_text", "'Hello'", "'How are you?'"]) else: assert False, "Only batch_size <=2 is supported in test." assert not use_py_session, "Only CPP session is supported in Draft-Target-Model." run_cmd = deepcopy(common_run_cmd) run_cmd.extend([ f"--engine_dir={target_engine_dir}", f"--draft_engine_dir={draft_engine_dir}", f"--draft_target_model_config={draft_model_config}", f"--output_csv={engine_dir}/draft_target_output.csv", ]) baseline_run_cmd = deepcopy(common_run_cmd) baseline_run_cmd.extend([ f"--engine_dir={baseline_engine_dir}", f"--output_csv={engine_dir}/baseline_output.csv", ]) venv_check_call(llm_venv, run_cmd) venv_check_call(llm_venv, baseline_run_cmd) print("Compare outputs ...") with open(f"{engine_dir}/draft_target_output.csv") as dt_f, open( f"{engine_dir}/baseline_output.csv") as b_f: for bs, (dt_request, b_request) in enumerate(zip(csv.reader(dt_f), csv.reader(b_f))): assert ( len(dt_request) == len(b_request) ), f"Output length at ({bs=}) is different ({len(dt_request)} v.s. {len(b_request)})." for index, (dt, b) in enumerate(zip(dt_request, b_request)): assert ( int(dt) == int(b) ), f"Output at ({bs=}, {index=}) is different ({dt} v.s. {b})."