#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg import pathlib as _pl import platform as _pf import sys as _sys from build_engines_utils import run_command, wincopy def build_engine(weight_dir: _pl.Path, engine_dir: _pl.Path, *args): ckpt_dir = engine_dir / 'ckpt' covert_cmd = [_sys.executable, "examples/llama/convert_checkpoint.py" ] + ([f'--model_dir={weight_dir}'] if weight_dir else []) + [ f'--output_dir={ckpt_dir}', '--dtype=float16', ] + list(args) run_command(covert_cmd) build_args = [ 'trtllm-build', f'--checkpoint_dir={ckpt_dir}', f'--output_dir={engine_dir}', '--gpt_attention_plugin=float16', '--use_custom_all_reduce=enable', '--gemm_plugin=float16', '--max_batch_size=32', '--max_input_len=40', '--max_output_len=20', '--max_beam_width=2', '--log_level=error', '--paged_kv_cache=enable', '--remove_input_padding=enable', ] run_command(build_args) def build_engines(model_cache: str, only_multi_gpu: bool): resources_dir = _pl.Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' model_name = 'llama-7b-hf' if model_cache: print("Copy model from model_cache") model_cache_dir = _pl.Path(model_cache) / 'llama-models' / model_name assert (model_cache_dir.is_dir()) if _pf.system() == "Windows": wincopy(source=str(model_cache_dir), dest=model_name, isdir=True, cwd=models_dir) else: run_command( ["rsync", "-av", str(model_cache_dir), "."], cwd=models_dir) hf_dir = models_dir / model_name assert hf_dir.is_dir() engine_dir = models_dir / 'rt_engine' / model_name tp_pp_sizes = [(1, 1)] if only_multi_gpu: tp_pp_sizes = [(1, 4), (4, 1), (2, 2)] for tp_size, pp_size in tp_pp_sizes: tp_pp_dir = f"tp{tp_size}-pp{pp_size}-gpu" print(f"\nBuilding fp16 tp{tp_size} pp{pp_size} engine") build_engine(hf_dir, engine_dir / f'fp16-plugin-packed-paged/{tp_pp_dir}', f'--tp_size={tp_size}', f'--pp_size={pp_size}') print("Done.") if __name__ == "__main__": parser = _arg.ArgumentParser() parser.add_argument("--model_cache", type=str, help="Directory where models are stored") parser.add_argument( "--only_multi_gpu", action="store_true", help="Flag to build only for Tensor and Pipeline parallelism") build_engines(**vars(parser.parse_args()))