# Multi-Modal This document shows how to run multimodal pipelines with TensorRT-LLM, e.g. from image+text input modalities to text output. Multimodal models' LLM part has an additional parameter `--max_multimodal_len` compared to LLM-only build commands. Under the hood, `max_multimodal_len` and `max_prompt_embedding_table_size` are effectively the same concept, i.e., prepended/concatenated embeddings (either multimodal feature embeddings or prompt tuning embeddings) to the LLM input embeddings. The multimodal features from the visual encoder of shape `[batch_size, num_visual_features, visual_hidden_dim]` is flattened as `[batch_size * num_visual_features, visual_hidden_dim]` and passed like a prompt embedding table. We first describe how to run each model on a single GPU. We then provide general guidelines on using tensor parallelism for LLM part of the pipeline. ## BLIP2-T5 1. Download Huggingface weights and convert original checkpoint to TRT-LLM checkpoint format following example in `examples/enc_dec/README.md`. ```bash export MODEL_NAME=flan-t5-xl git clone https://huggingface.co/google/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} python ../enc_dec/t5/convert.py -i tmp/hf_models/${MODEL_NAME} \ -o tmp/trt_models/${MODEL_NAME} --weight_data_type float32 \ --inference_tensor_para_size 1 ``` 2. Build TRT-LLM engine from TRT-LLM checkpoint ```bash python ../enc_dec/build.py --model_type t5 \ --weight_dir tmp/trt_models/${MODEL_NAME}/tp1 \ --output_dir trt_engines/${MODEL_NAME}/1-gpu \ --engine_name ${MODEL_NAME} \ --remove_input_padding \ --use_bert_attention_plugin \ --use_gpt_attention_plugin \ --use_gemm_plugin \ --dtype bfloat16 \ --max_beam_width 1 \ --max_batch_size 8 \ --max_encoder_input_len 924 \ --max_output_len 100 \ --max_multimodal_len 256 # 8 (max_batch_size) * 32 (num_visual_features) ``` **NOTE**: `max_multimodal_len = max_batch_size * num_visual_features`, so if you change max_batch_size, max multimodal length **MUST** be changed accordingly. The built T5 engines are located in `./trt_engines/${MODEL_NAME}/1-gpu/bfloat16/tp1`. 3. Build TensorRT engines for visual components ```bash python build_visual_engine.py --model_name ${MODEL_NAME} --model_path tmp/hf_models/${MODEL_NAME} --max_batch_size 8 ``` The built engines are located in `./visual_engines/${MODEL_NAME}`. To run the BLIP2 pipeline with batch size > 1, change `--max_batch_size` argument to `build_visual_engine.py` accordingly. 4. Assemble everything into BLIP2 pipeline ```bash python run.py \ --blip2_encoder \ --max_new_tokens 30 \ --input_text "Question: which city is this? Answer:" \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/1-gpu/bfloat16/tp1 ``` ## BLIP2-OPT OPT pipeline needs few minor changes from T5 pipeline 1. Convert Huggingface weights to TRT-LLM checkpoint format following `examples/opt/README.md`. 2. Use `trtllm-build` command to build TRT-LLM engine for OPT. 3. Add `--decoder-llm` argument to inference script, since OPT is a decoder-only LLM. 4. The full list of commands is as follows: ```bash export MODEL_NAME=opt-2.7b git clone https://huggingface.co/facebook/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} python ../opt/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --dtype float16 \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gemm_plugin float16 \ --max_beam_width 1 \ --max_batch_size 8 \ --max_multimodal_len 256 \ --max_input_len 924 \ --max_output_len 100 python build_visual_engine.py --model_name ${MODEL_NAME} --model_path tmp/hf_models/${MODEL_NAME} python run.py \ --blip2_encoder \ --max_new_tokens 30 \ --input_text "Question: which city is this? Answer:" \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --decoder_llm ``` 5. INT8/INT4 weight-only quantization for OPT can be enabled using commands as follows (take `INT4` as an example, while `INT8` is the default precision for weight-only quantization): ```bash python ../opt/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --dtype float16 \ --output_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --use_weight_only \ --weight_only_precision int4 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu \ --gemm_plugin float16 \ --max_beam_width 1 \ --max_batch_size 8 \ --max_multimodal_len 256 \ --max_input_len 924 \ --max_output_len 100 ``` The built OPT engines lie in `trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu`. You should use this directory as `--llm_engine_dir` argument to `run.py` **NOTE:** INT8/INT4 option is not supported for BLIP2-T5, because quantization support has not been added for encoder-decoder models yet. ## LLaVA 1. Download Huggingface model weights. This model has both LLM and visual components unlike BLIP2 example which downloads only LLM components from Huggingface. ```bash export MODEL_NAME="llava-1.5-7b-hf" git clone https://huggingface.co/llava-hf/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` 2. Generate TRT-LLM engine for LLaMA following example in `examples/llama/README.md` ```bash python ../llama/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --dtype float16 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 2048 \ --max_output_len 512 \ --max_multimodal_len 576 # 1 (max_batch_size) * 576 (num_visual_features) ``` 3. Build TensorRT engines for visual components ```bash python build_visual_engine.py --model_name ${MODEL_NAME} --model_path tmp/hf_models/${MODEL_NAME} ``` 4. Add `--decoder-llm` argument to inference script, since LLaMA is a decoder-only LLM. ```bash python run.py \ --max_new_tokens 30 \ --input_text "Question: which city is this? Answer:" \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \ --decoder_llm ``` 5. INT8/INT4 weight-only quantization for LLaMA can be enabled as follows (take `INT4` as an example, while `INT8` is the default precision for weight-only quantization): ```bash python ../llama/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --dtype float16 \ --output_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --use_weight_only \ --weight_only_precision int4 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu \ --output_dir trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 924 \ --max_output_len 100 \ --max_multimodal_len 576 ``` The built engines lie in `trt_engines/${MODEL_NAME}/int4_weightonly/1-gpu`. You should use this directory as `--llm_engine_dir` argument to `run.py` 6. One can use LLaVA with other quantization options, like SmoothQuant and INT4 AWQ, that are supported by LLaMA. Instructions in [../llama/README.md](../llama/README.md) to enable SmoothQuant and INT4 AWQ can be re-used to generate quantized TRT engines for LLM component of LLaVA. ## Nougat 1. Download Huggingface weights ```bash export MODEL_NAME="nougat-base" # or nougat-small git clone https://huggingface.co/facebook/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` 2. Convert Huggingface weights into TRT-LLM checkpoints and build TRT engines using scripts in `examples/enc_dec` Nougat uses mBART architecture but replaces the LLM encoder with a Swin Transformer encoder. To achieve this, we add an extra `--nougat` flag (over mBART example) to `bart/convert.py` and `build.py` in `examples/enc_dec`. ```bash python ../enc_dec/bart/convert.py -i tmp/hf_models/${MODEL_NAME} \ -o tmp/trt_models/${MODEL_NAME} --weight_data_type float32 \ --inference_tensor_para_size 1 --nougat python ../enc_dec/build.py \ --model_type bart \ --weight_dir tmp/trt_models/${MODEL_NAME}/tp1 \ -o trt_engines/${MODEL_NAME}/1-gpu \ --engine_name $MODEL_NAME \ --bert_attention_plugin \ --use_gpt_attention_plugin \ --use_gemm_plugin \ --dtype bfloat16 \ --max_beam_width 1 \ --max_batch_size 1 \ --nougat \ --max_output_len 100 \ --max_multimodal_len 588 # 1 (max_batch_size) * 588 (num_visual_features) ``` 3. Generate TensorRT engines for visual components and combine everything into final pipeline. ```bash python build_visual_engine.py --model_name ${MODEL_NAME} --model_path tmp/hf_models/${MODEL_NAME} python run.py \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/1-gpu/bfloat16/tp1 \ --nougat ``` ## Enabling tensor parallelism for multi-GPU The LLM part of the pipeline can be run on multiple GPUs using tensor parallelism. The visual encoder will be replicated on each GPU and operate in a data parallel fashion. To enable tensor parallelism, both weight conversion step (from Huggingface to FT format) and engine building step should use additional arguments. Finally `run.py` should be prefixed with `mpirun -n NUM_GPUS --allow-run-as-root`. The full set of commands to enable 2-way tensor parallelism for LLaVA is: ```bash export MODEL_NAME="llava-1.5-7b-hf" python ../llama/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/2-gpu \ --dtype float16 --tp_size 2 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/2-gpu \ --output_dir trt_engines/${MODEL_NAME}/fp16/2-gpu \ --gemm_plugin float16 \ --max_batch_size 1 \ --max_input_len 2048 \ --max_output_len 512 \ --max_multimodal_len 576 python build_visual_engine.py --model_name ${MODEL_NAME} --model_path tmp/hf_models/${MODEL_NAME} mpirun -n 2 --allow-run-as-root \ python run.py \ --max_new_tokens 30 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --visual_engine_dir visual_engines/${MODEL_NAME} \ --llm_engine_dir trt_engines/${MODEL_NAME}/fp16/2-gpu \ --decoder_llm ```