# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..._utils import pad_vocab_size from ...functional import PositionEmbeddingType, Tensor from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear, Embedding, LayerNorm) from ...module import Module from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM, PretrainedConfig) class PhiDecoderLayer(Module): def __init__(self, config: PretrainedConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx tp_group = config.mapping.tp_group tp_size = config.mapping.tp_size self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size, dtype=config.dtype) self.attention = Attention( layer_idx=layer_idx, hidden_size=config.hidden_size, num_attention_heads=config.num_attention_heads, rotary_embedding_percentage=config.partial_rotary_factor, position_embedding_type=PositionEmbeddingType.rope_gpt_neox, rotary_embedding_base=config.rotary_base, max_position_embeddings=config.max_position_embeddings, dtype=config.dtype, attention_mask_type=AttentionMaskType.causal, bias=True, tp_group=tp_group, tp_size=tp_size, quant_mode=config.quant_mode) self.mlp = MLP(hidden_size=config.hidden_size, ffn_hidden_size=config.intermediate_size, hidden_act=config.hidden_act, dtype=config.dtype, tp_group=tp_group, tp_size=tp_size, quant_mode=config.quant_mode) def forward( self, hidden_states: Tensor, attention_mask=None, use_cache=False, kv_cache_params=None, attention_params=None, ): residual = hidden_states input_layernorm_output = self.input_layernorm(hidden_states) attention_output = self.attention( input_layernorm_output, attention_mask=attention_mask, use_cache=use_cache, kv_cache_params=kv_cache_params, attention_params=attention_params, norm_before_bmm1=True, ) if use_cache: attention_output, presents = attention_output feed_forward_hidden_states = self.mlp(input_layernorm_output, ) hidden_states = attention_output + feed_forward_hidden_states + residual if use_cache: return (hidden_states, presents) return hidden_states class PhiModel(Module): def __init__(self, config: PretrainedConfig): super().__init__() mapping = config.mapping use_parallel_embedding = False embedding_sharding_dim = 0 self.use_prompt_tuning = config.use_prompt_tuning self.vocab_embedding = Embedding( num_embeddings=config.vocab_size, embedding_dim=config.hidden_size, dtype=config.dtype, tp_size=mapping.tp_size if use_parallel_embedding else 1, tp_group=mapping.tp_group if use_parallel_embedding else None, sharding_dim=embedding_sharding_dim, tp_rank=mapping.rank) self.layers = DecoderLayerList(PhiDecoderLayer, config) self.ln_f = LayerNorm(normalized_shape=config.hidden_size, dtype=config.dtype) def forward( self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, prompt_embedding_table=None, prompt_tasks=None, prompt_vocab_size=None, ): args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if self.use_prompt_tuning else [] hidden_states = self.vocab_embedding(input_ids, *args) hidden_states = self.layers( hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params, ) if use_cache: hidden_states, presents = hidden_states hidden_states = self.ln_f(hidden_states) if use_cache: return (hidden_states, tuple(presents)) return hidden_states class PhiForCausalLM(DecoderModelForCausalLM): def __init__(self, config: PretrainedConfig): self.check_config(config) transformer = PhiModel(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) share_weight = None if config.share_embedding_table: share_weight = transformer.vocab_embedding.weight lm_head = ColumnLinear(config.hidden_size, vocab_size_padded, bias=True, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True, share_weight=share_weight) super().__init__(config, transformer, lm_head) def check_config(self, config): config.set_if_not_exist('partial_rotary_factor', 0.4) config.set_if_not_exist('rotary_base', 10000.0)