/* * Copyright (c) 2020-2024, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/runtime/common.h" #include #include namespace tensorrt_llm { namespace kernels { static constexpr uint32_t TOP_K_MAX = 1024; // clang-format off //! \brief Given logProbs, performs top K **and** top P sampling at the same time. Fills sampled tokens to outputIds. //! Computes sequenceLength, finished state, cumLogProbs inplace. //! Sampling per request can be controlled using skipDecode, topPs and topKs parameters. //! Function sets workspaceSize and exits early if workspace is nullptr. //! If logits are Nan, we set output token to be the last in the vocabulary. //! //! \param workspace pointer to the workspace. Has to be pre-allocated by caller. Function does not take ownership of the //! buffer. //! \param logProbs input buffer [batchSize, maxTokensPerStep, vocabSizePadded]. //! Log probabilities of each token in the vocab. If logitsHasProbs is true, //! logProbs must contain **just** probabilities instead of log probabilities. //! \param logProbsPtr input buffer [batchSize][vocabSizePadded] array of pointers to logits. If nullptr, logProbs is used. //! Only maxTokensPerStep == 1 is supported. //! \param outputIdsPtrs output buffer [maxBatchSize][maxSeqLen], optional. Contains pointers to rows with output tokens per request. //! If nullptr, outputIds must be provided. //! \param outputIds output buffer [maxBatchSize, maxSeqLen], optional. Tensor to store output tokens. //! Not used if outputIdsPtrs != nullptr //! \param sequenceLength input/output buffer [maxBatchSize]. Current sequence length of the request up to, but excluding endId token //! \param finishedInput input buffer [maxBatchSize]. If true, request exits early. //! \param finishedOutput output buffer [maxBatchSize]. Set flag if sequence has finished (if finished || outputId == endId). //! \param cumLogProbs input/output buffer [maxBatchSize]. Cumulative log probability of selected tokens. Ignored if nullptr //! \param outputLogProbs output buffer [maxBatchSize]. Log probs is the probability induced by the top-k sampling. //! If normalizeLogProbs is true, we normalize the probability 'expLogit' of the selected token by the probability 's_sum' of a set of top-k //! tokens, meaning the logProb is the probability of the selected token, conditioned on the event that it is selected, //! i.e., log_prob = log P(i | i is in top-k) = log(expLogit / s_sum). //! Ignored if nullptr. //! \param curandstate input buffer [maxBatchSize]. Curand states properly //! initialized using invokeCurandInitialize per request. //! \param maxTopK maximum among all topKs K for topK sampling //! \param topKs input buffer [maxBatchSize]. K for topK sampling per request. //! Supported K is in range [1; 1024]. Where K=1 is greedy search. If nullptr maxTopK is used for all requests. //! \param topP probability for topP sampling. //! \param topPs input buffer [maxBatchSize]. Probability for topP sampling per request. //! Supported P is in range (0.0, 1.0]. If nullptr, topP is used for all requests //! \param vocabSizePadded size of padded vocab //! \param endIds input buffer [maxBatchSize]. EOS token ids per request //! \param batchSlots input buffer[batchSize], optional. Indices of rows of data in memory pool. //! Linear indexing (batchIdx) is used if nullptr. //! \param stream cuda stream //! \param batchSize batch size //! \param maxBatchSize maximum batch size //! \param tokensPerStep input buffer [maxBatchSize], optional. Number of tokens per step for each request. //! It is assumed that all requests have maxTokensPerStep tokens per step if nullptr. //! \param maxTokensPerStep maximum number of tokens per computed per step //! \param maxSeqLen maximum sequence length of outputIds //! \param skipDecode input buffer [maxBatchSize]. Flags whether to skip decoding per request //! \param normalizeLogProbs when set to True outputLogProbs are normalized to TopK //! \param logitsHasProbs flag to highlight that logProbs contains probabilities //! \param returnAllTopK flag to return all selectedTopK results // clang-format on template void invokeBatchTopKSampling(void* workspace, T const* logProbs, T const* const* logProbsPtr, runtime::TokenIdType** outputIdsPtrs, runtime::TokenIdType* outputIds, runtime::SizeType* sequenceLengths, FinishedState const* finishedInput, FinishedState* finishedOutput, float* cumLogProbs, float* outputLogProbs, curandState_t* curandstate, runtime::SizeType maxTopK, runtime::SizeType const* topKs, float topP, float const* topPs, runtime::SizeType vocabSizePadded, runtime::TokenIdType const* endIds, runtime::SizeType const* batchSlots, cudaStream_t stream, runtime::SizeType batchSize, runtime::SizeType maxBatchSize, runtime::SizeType const* tokensPerStep, runtime::SizeType maxTokensPerStep, runtime::SizeType maxSeqLen, bool const* skipDecode, bool normalizeLogProbs, bool logitsHasProbs, bool returnAllTopK); //! \brief Specialization of invokeBatchTopKSampling with topPs=nullptr and topKs=nullptr template void invokeTopKSampling(void* workspace, T const* logProbs, T const* const* logProbsPtr, runtime::TokenIdType** outputIdsPtrs, runtime::TokenIdType* outputIds, runtime::SizeType* sequenceLength, FinishedState const* finishedInput, FinishedState* finishedOutput, float* cumLogProbs, float* outputLogProbs, curandState_t* curandstate, runtime::SizeType topK, float topP, runtime::SizeType vocabSizePadded, runtime::TokenIdType const* endIds, runtime::SizeType const* batchSlots, cudaStream_t stream, runtime::SizeType batchSize, int maxBatchSize, runtime::SizeType const* tokensPerStep, runtime::SizeType maxTokensPerStep, runtime::SizeType maxSeqLen, bool const* skipDecode, bool normalizeLogProbs, bool logitsHasProbs, bool returnAllTopK); template [[nodiscard]] std::vector getTopKWorkspaceSizes(runtime::SizeType batchSize, runtime::SizeType maxTokensPerStep, runtime::SizeType maxTopK, runtime::SizeType vocabSizePadded) { runtime::SizeType constexpr maxBlockPerBeam = 8; auto const tempLogProbsBufSize = sizeof(T) * batchSize * maxTokensPerStep * vocabSizePadded; // type T auto const topKTmpIdsBufSize = sizeof(runtime::SizeType) * batchSize * maxTokensPerStep * maxTopK * maxBlockPerBeam; // type int auto const topKTmpValBufSize = sizeof(T) * batchSize * maxTokensPerStep * maxTopK * maxBlockPerBeam; // type T return {tempLogProbsBufSize, topKTmpIdsBufSize, topKTmpValBufSize}; } //! \brief Returns workspace size in bytes needed for sampling TopK computation //! \param batchSize batch size //! \param maxTokensPerStep maximum number of tokens per computed per step //! \param maxTopK maximum among all topKs K for topK sampling //! \param vocabSizePadded size of padded vocab template [[nodiscard]] size_t getTopKWorkspaceSize(runtime::SizeType batchSize, runtime::SizeType maxTokensPerStep, runtime::SizeType maxTopK, runtime::SizeType vocabSizePadded) { auto const workspaceSizes = getTopKWorkspaceSizes(batchSize, maxTokensPerStep, maxTopK, vocabSizePadded); return tensorrt_llm::common::calcAlignedSize(workspaceSizes, 256); } } // namespace kernels } // namespace tensorrt_llm