/* * Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/logger.h" #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/common/reduceKernelUtils.cuh" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/kernels/samplingAirTopPKernels.h" #include "tensorrt_llm/kernels/samplingTopKKernels.h" #include "tensorrt_llm/kernels/samplingTopPKernels.h" #include "tensorrt_llm/layers/topPSamplingLayer.h" #include #include using namespace tensorrt_llm::common; using namespace tensorrt_llm::kernels; using namespace tensorrt_llm::runtime; namespace tensorrt_llm { namespace layers { static __global__ void setTopPRuntimeArgs(SizeType batchSize, SizeType topK, SizeType* topKs, SizeType topKsSize, float topP, float* topPs, SizeType topPsSize, bool* skipDecode, SizeType const* batchSlots, float* initialTopPBuf) { /** * @brief Setup the runtime arguments for topp, broadcasting top_p to top_ps and top_k to top_ks. */ auto index = static_cast(blockIdx.x * blockDim.x + threadIdx.x); for (SizeType bi = index; bi < batchSize; bi += static_cast(gridDim.x * blockDim.x)) { auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi; auto k = topKsSize > 1 ? topKs[batchSlot] : topK; auto const p = topPsSize > 1 ? topPs[batchSlot] : topP; if (k == 0 && p == 0.0f) { // TensorRT-LLM's topp implementation does not support topp = 0.0f, but it // equivalent to greedy search. So, we set the topk = 1 as an alternative // solution. k = 1; } topKs[batchSlot] = k; topPs[batchSlot] = p; skipDecode[batchSlot] = k > 0; initialTopPBuf[batchSlot] = topPs[batchSlot]; } } template TopPSamplingLayer::TopPSamplingLayer(SizeType maxBatchSize, SizeType vocabSize, SizeType vocabSizePadded, cudaStream_t stream, std::shared_ptr allocator, cudaDeviceProp* prop, bool isDeterministic, bool isAirTopP) : BaseSamplingLayer(maxBatchSize, vocabSize, vocabSizePadded, stream, std::move(allocator), prop) , mIsDeterministic(isDeterministic) , mIsAirTopP(isAirTopP) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); allocateBuffer(mMaxBatchSize); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template TopPSamplingLayer::~TopPSamplingLayer() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); freeBuffer(); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopPSamplingLayer::allocateBuffer(SizeType batchSize) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); if (mIsAirTopP == false) { mSamplingWorkspaceSize = getTopPWorkspaceSize(batchSize, mVocabSizePadded); } else { mSamplingWorkspaceSize = getAirTopPWorkspaceSize(batchSize, mVocabSizePadded, mIsDeterministic); } std::array deviceBufferSizes; deviceBufferSizes[0] = sizeof(TokenIdType) * batchSize * mVocabSizePadded; deviceBufferSizes[1] = sizeof(SizeType) * (batchSize + 1); deviceBufferSizes[2] = sizeof(SizeType) * (batchSize + 1); deviceBufferSizes[3] = sizeof(SizeType) * batchSize; deviceBufferSizes[4] = sizeof(float) * batchSize; deviceBufferSizes[5] = sizeof(float) * batchSize; deviceBufferSizes[6] = sizeof(float) * batchSize; deviceBufferSizes[7] = sizeof(float) * batchSize; deviceBufferSizes[8] = sizeof(TokenIdType) * batchSize; deviceBufferSizes[9] = sizeof(bool) * batchSize; deviceBufferSizes[10] = *std::max_element(&deviceBufferSizes[3], &deviceBufferSizes[9]); mTopPIdValsDevice = mAllocator->reMalloc(mTopPIdValsDevice, deviceBufferSizes[0], false); mTopPOffsetDevice = mAllocator->reMalloc(mTopPOffsetDevice, deviceBufferSizes[1], false); mBeginTopPOffsetDevice = mAllocator->reMalloc(mBeginTopPOffsetDevice, deviceBufferSizes[2], false); mRuntimeTopKDevice = mAllocator->reMalloc(mRuntimeTopKDevice, deviceBufferSizes[3], false); mRuntimeTopPDevice = mAllocator->reMalloc(mRuntimeTopPDevice, deviceBufferSizes[4], false); mInitialTopPDevice = mAllocator->reMalloc(mInitialTopPDevice, deviceBufferSizes[5], false); mTopPDecayDevice = mAllocator->reMalloc(mTopPDecayDevice, deviceBufferSizes[6], false); mTopPMinDevice = mAllocator->reMalloc(mTopPMinDevice, deviceBufferSizes[7], false); mTopPResetIdsDevice = mAllocator->reMalloc(mTopPResetIdsDevice, deviceBufferSizes[8], false); mSkipDecodeDevice = mAllocator->reMalloc(mSkipDecodeDevice, deviceBufferSizes[9], false); mSetupWorkspaceDevice = mAllocator->reMalloc(mSetupWorkspaceDevice, deviceBufferSizes[10], false); mSkipDecodeHost = static_cast(std::realloc(mSkipDecodeHost, sizeof(bool) * batchSize)); std::fill(mSkipDecodeHost, mSkipDecodeHost + batchSize, true); mAllocatedSize = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0); TLLM_LOG_DEBUG("topPSamplingLayer allocated %lu bytes on GPU", mAllocatedSize); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopPSamplingLayer::freeBuffer() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); mAllocator->free((void**) (&mTopPIdValsDevice)); mAllocator->free((void**) (&mTopPOffsetDevice)); mAllocator->free((void**) (&mBeginTopPOffsetDevice)); mAllocator->free((void**) (&mRuntimeTopKDevice)); mAllocator->free((void**) (&mRuntimeTopPDevice)); mAllocator->free((void**) (&mInitialTopPDevice)); mAllocator->free((void**) (&mTopPDecayDevice)); mAllocator->free((void**) (&mTopPMinDevice)); mAllocator->free((void**) (&mTopPResetIdsDevice)); mAllocator->free((void**) (&mSkipDecodeDevice)); mAllocator->free((void**) (&mSetupWorkspaceDevice)); std::free(mSkipDecodeHost); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopPSamplingLayer::setup(SizeType const batchSize, SizeType const* batchSlots, SetupParams const& setupParams) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); SizeType const defaultTopK = 0; auto runtimeTopK = setupParams.runtime_top_k.value_or(std::vector{defaultTopK}); auto runtimeTopP = setupParams.runtime_top_p.value_or(std::vector{}); auto const runtimeTopKSize = runtimeTopK.size(); auto const runtimeTopPSize = runtimeTopP.size(); auto const defaultTopPDecay{1.0f}; auto decayVec = setupParams.top_p_decay.value_or(std::vector(batchSize, defaultTopPDecay)); auto const defaultTopPMin{1e-6f}; // prevent topp becoming 0.0 auto topPMinVec = setupParams.top_p_min.value_or(std::vector(batchSize, defaultTopPMin)); SizeType const defaultTopPResetId{-1}; auto topPResetIdsVec = setupParams.top_p_reset_ids.value_or(std::vector(batchSize, defaultTopPResetId)); if (runtimeTopPSize == 0) { for (SizeType bi = 0; bi < static_cast(batchSize); ++bi) { auto bid = bi; if (batchSlots) { bid = batchSlots[bi]; } mSkipDecodeHost[bid] = true; } cudaAutoCpy(mSkipDecodeDevice, mSkipDecodeHost, mMaxBatchSize, mStream); return; } for (auto& topP : runtimeTopP) { if (topP < 0.f || topP > 1.0f) { TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP); topP = std::clamp(topP, 0.f, 1.f); } } for (auto& decay : decayVec) { if (decay <= 0.f || decay > 1.0f) { TLLM_LOG_WARNING("Decay (%f) is out of range ([0.0, 1.0f]). Change to 1.0.", decay); decay = 1.0f; } } for (auto& topPMin : topPMinVec) { if (topPMin <= 0.f || topPMin > 1.0f) { TLLM_LOG_WARNING("TopP min (%f) is out of range ([0.0, 1.0f]). Change to 0.5.", topPMin); topPMin = 0.5f; } } auto const topK = runtimeTopK.at(0); auto const topP = runtimeTopP.at(0); if (runtimeTopKSize > 1) { TLLM_CHECK_WITH_INFO(static_cast(runtimeTopK.size()) == batchSize, fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize)); cudaAutoCpy(reinterpret_cast(mSetupWorkspaceDevice), runtimeTopK.data(), batchSize, mStream); invokeScatterDecodingParams( reinterpret_cast(mSetupWorkspaceDevice), mRuntimeTopKDevice, batchSlots, batchSize, mStream); } if (runtimeTopPSize > 1) { TLLM_CHECK_WITH_INFO(static_cast(runtimeTopP.size()) == batchSize, fmtstr("runtime_top_p.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopP.size(), batchSize)); cudaAutoCpy(reinterpret_cast(mSetupWorkspaceDevice), runtimeTopP.data(), batchSize, mStream); invokeScatterDecodingParams( reinterpret_cast(mSetupWorkspaceDevice), mRuntimeTopPDevice, batchSlots, batchSize, mStream); } auto fillBuffers = [this, &batchSize, &batchSlots](std::string name, auto const& vector, auto deviceTmpBuffer, auto deviceBuffer) { TLLM_CHECK_WITH_INFO(static_cast(vector.size()) == batchSize, fmtstr("%s.size() (%lu) == batchSize (%d) is not satisfied!", name.c_str(), vector.size(), batchSize)); cudaAutoCpy(deviceTmpBuffer, vector.data(), batchSize, mStream); invokeScatterDecodingParams(deviceTmpBuffer, deviceBuffer, batchSlots, batchSize, mStream); }; fillBuffers("top_p_decay", decayVec, reinterpret_cast(mSetupWorkspaceDevice), mTopPDecayDevice); fillBuffers("top_p_min", topPMinVec, reinterpret_cast(mSetupWorkspaceDevice), mTopPMinDevice); fillBuffers( "top_p_reset_ids", topPResetIdsVec, reinterpret_cast(mSetupWorkspaceDevice), mTopPResetIdsDevice); { dim3 block(std::min(static_cast(batchSize), 256)); dim3 grid(divUp(static_cast(batchSize), static_cast(block.x))); setTopPRuntimeArgs<<>>(batchSize, topK, mRuntimeTopKDevice, runtimeTopKSize, topP, mRuntimeTopPDevice, runtimeTopPSize, mSkipDecodeDevice, batchSlots, mInitialTopPDevice); sync_check_cuda_error(); } cudaAutoCpy(mSkipDecodeHost, mSkipDecodeDevice, mMaxBatchSize, mStream); std::vector runtimeTopPs(mMaxBatchSize); cudaAutoCpy(runtimeTopPs.data(), mRuntimeTopPDevice, mMaxBatchSize, mStream); { auto maxTopP = 0.f; for (SizeType bi = 0; bi < static_cast(batchSize); ++bi) { auto const bid = batchSlots ? batchSlots[bi] : bi; maxTopP = std::max(maxTopP, runtimeTopPs[bid]); } mRuntimeMaxTopP = std::max(mRuntimeMaxTopP, maxTopP); } if (mIsAirTopP == true) { int smCnt = 0; if (mCudaDeviceProp) { smCnt = mCudaDeviceProp->multiProcessorCount; } if (smCnt <= 0) { int deviceId; check_cuda_error(cudaGetDevice(&deviceId)); // Get the correct device id cudaDeviceProp prop; check_cuda_error(cudaGetDeviceProperties(&prop, deviceId)); smCnt = prop.multiProcessorCount; } mAirTopPBlockNum = calcAirTopPBlockNum(batchSize, (int) mVocabSizePadded, smCnt, mIsDeterministic); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopPSamplingLayer::forward(DecodingOutputParams& outputs, ForwardParams& inputs) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto const batchSize = inputs.logits.shape[0]; // Probabilities must be already computed instead of logits auto probs = inputs.logits.template getPtr(); auto endIds = inputs.end_ids.template getPtr(); auto batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr() : nullptr; auto curandStatesDevice = inputs.curand_states; auto samplingWorkspaceDevice = inputs.sampling_workspace; TLLM_CHECK_WITH_INFO(curandStatesDevice, "No curand states provided"); TLLM_CHECK_WITH_INFO(samplingWorkspaceDevice, "No sampling workspace provided"); if (mIsAirTopP == false) { invokeTopPInitialize( mTopPIdValsDevice, mTopPOffsetDevice, mBeginTopPOffsetDevice, batchSize, mVocabSizePadded, mStream); sync_check_cuda_error(); } FinishedState* finishedInput = (inputs.finished) ? reinterpret_cast(inputs.finished->template getPtr()) : nullptr; FinishedState* finishedOutput = (outputs.finished) ? reinterpret_cast(outputs.finished->template getPtr()) : nullptr; auto cumLogProbs = (outputs.cum_log_probs) ? outputs.cum_log_probs->template getPtr() : static_cast(nullptr); auto outputLogProbs = (outputs.output_log_probs) ? outputs.output_log_probs->template getPtr() : static_cast(nullptr); auto sequenceLength = (outputs.sequence_length) ? outputs.sequence_length->template getPtr() : static_cast(nullptr); if (mIsAirTopP == false) { invokeBatchTopPSampling(samplingWorkspaceDevice, outputs.output_ids_ptr.template getPtr(), sequenceLength, finishedInput, finishedOutput, cumLogProbs, outputLogProbs, probs, mTopPIdValsDevice, mTopPOffsetDevice, mBeginTopPOffsetDevice, curandStatesDevice, batchSize, mMaxBatchSize, mVocabSizePadded, endIds, mRuntimeMaxTopP, mRuntimeTopPDevice, mStream, mSkipDecodeDevice, batchSlots); } else { invokeBatchAirTopPSampling(samplingWorkspaceDevice, outputs.output_ids_ptr.template getPtr(), sequenceLength, finishedInput, finishedOutput, cumLogProbs, outputLogProbs, probs, curandStatesDevice, batchSize, mMaxBatchSize, mVocabSizePadded, endIds, mRuntimeMaxTopP, mRuntimeTopPDevice, mStream, mAirTopPBlockNum, mSkipDecodeDevice, batchSlots, mIsDeterministic); } sync_check_cuda_error(); invokeComputeToppDecay(mRuntimeTopPDevice, mInitialTopPDevice, outputs.output_ids_ptr.template getPtr(), mTopPDecayDevice, mTopPMinDevice, mTopPResetIdsDevice, sequenceLength, batchSlots, batchSize, mStream); sync_check_cuda_error(); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template class TopPSamplingLayer; template class TopPSamplingLayer; } // namespace layers } // namespace tensorrt_llm