/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tllmRuntime.h" #include "tensorrt_llm/common/nvtxUtils.h" #include "tllmLogger.h" #include #include using namespace tensorrt_llm::runtime; namespace { using DimType = std::remove_reference_t().d[0])>; static_assert(sizeof(SizeType) >= sizeof(DimType), "SizeType is too small"); static_assert(std::is_signed::value, "SizeType must be signed"); nvinfer1::Dims shapeToDims(std::vector const& shape) { TLLM_CHECK(shape.size() <= nvinfer1::Dims::MAX_DIMS); nvinfer1::Dims dims; auto constexpr dim_max = std::numeric_limits::max(); dims.nbDims = static_cast(shape.size()); for (std::size_t i = 0; i < shape.size(); ++i) { // shape[i] >= 0 because it has unsigned type. Check upper bound: TLLM_CHECK(shape[i] <= static_cast(dim_max)); dims.d[i] = static_cast(shape[i]); } return dims; } std::vector dimsToShape(nvinfer1::Dims const& dims) { TLLM_CHECK(dims.nbDims >= 0); std::vector shape(dims.nbDims); for (std::int32_t i = 0; i < dims.nbDims; ++i) { TLLM_CHECK(dims.d[i] >= 0); shape[i] = static_cast(dims.d[i]); } return shape; } tensorrt_llm::runtime::TllmLogger defaultLogger{}; } // namespace TllmRuntime::TllmRuntime(void const* engineData, std::size_t engineSize, nvinfer1::ILogger& logger) : mStream(std::make_shared()) , mBufferManager{mStream, true} // Ensure to trim the memory pool on destruction. , mRuntime{nvinfer1::createInferRuntime(logger)} , mEngine{mRuntime->deserializeCudaEngine(engineData, engineSize)} { TLLM_CHECK_WITH_INFO(mEngine != nullptr, "Failed to deserialize cuda engine"); auto const devMemorySize = mEngine->getDeviceMemorySize(); mEngineBuffer = mBufferManager.gpu(devMemorySize); } TllmRuntime::TllmRuntime(void const* engineData, std::size_t engineSize) : TllmRuntime{engineData, engineSize, defaultLogger} { } nvinfer1::IExecutionContext& TllmRuntime::addContext(std::int32_t profileIndex) { TLLM_CHECK(0 <= profileIndex && profileIndex < mEngine->getNbOptimizationProfiles()); mContexts.emplace_back(mEngine->createExecutionContextWithoutDeviceMemory()); auto& context = *mContexts.back(); context.setDeviceMemory(mEngineBuffer->data()); context.setOptimizationProfileAsync(profileIndex, mStream->get()); return context; } void TllmRuntime::clearContexts() { for (auto& context : mContexts) { context.reset(); } mContexts.clear(); } bool TllmRuntime::executeContext(SizeType contextIndex) const { NVTX3_FUNC_RANGE(); auto& context = getContext(contextIndex); return context.enqueueV3(mStream->get()); } void TllmRuntime::setInputTensors(SizeType contextIndex, TensorMap const& tensorMap) { NVTX3_FUNC_RANGE(); auto& context = getContext(contextIndex); for (std::int32_t i = 0; i < mEngine->getNbIOTensors(); ++i) { auto const name = mEngine->getIOTensorName(i); if (mEngine->getTensorIOMode(name) == nvinfer1::TensorIOMode::kINPUT) { auto pos = tensorMap.find(name); if (pos == tensorMap.end()) { auto expectedShape = mEngine->getTensorShape(name); TLLM_THROW( "Input tensor '%s' not found; expected shape: %s", name, ITensor::toString(expectedShape).c_str()); } auto const& tensor = pos->second; auto const tensorDtype = tensor->getDataType(); auto const engineDtype = mEngine->getTensorDataType(name); // WAR: TRT does not support mixed FP8 and FP16 input, so engine expects FP16 tensors. TLLM_CHECK_WITH_INFO(tensorDtype == engineDtype || (tensorDtype == nvinfer1::DataType::kFP8 && engineDtype == nvinfer1::DataType::kHALF), "%s: expected type %d, provided type %d", name, static_cast(engineDtype), static_cast(tensorDtype)); auto const shapeExpected = mEngine->getTensorShape(name); auto const shapeProvided = tensor->getShape(); TLLM_CHECK_WITH_INFO(shapeExpected.nbDims == shapeProvided.nbDims, "%s: expected %d dims, provided %d dims", name, shapeExpected.nbDims, shapeProvided.nbDims); for (SizeType j = 0; j < shapeExpected.nbDims; ++j) { auto const dimExpected = shapeExpected.d[j]; auto const dimProvided = shapeProvided.d[j]; if (dimExpected >= 0 && dimExpected != dimProvided) { TLLM_LOG_WARNING( "%s: expected dim[%d] = %d, provided dim[%d] = %d", name, j, dimExpected, j, dimProvided); } } TLLM_CHECK_WITH_INFO(context.setInputShape(name, shapeProvided), "Tensor '%s' has invalid shape %s, expected %s", name, ITensor::toString(shapeProvided).c_str(), ITensor::toString(shapeExpected).c_str()); auto* const data = tensor->data(); if (data) { context.setInputTensorAddress(name, data); } else { TLLM_CHECK_WITH_INFO(tensor->getSize() == 0, std::string("Invalid data for tensor: ") + name); // TensorRT runtime does not support nullptr. if (!mDummyTensor) { mDummyTensor = mBufferManager.gpu(ITensor::makeShape({1})); } context.setInputTensorAddress(name, mDummyTensor->data()); } } } { NVTX3_SCOPED_RANGE(infer_shapes); char const* missing; auto const nbMissing = context.inferShapes(1, &missing); if (nbMissing > 0) { TLLM_THROW("Input shape not specified: %s", missing); } else if (nbMissing < 0) { TLLM_THROW("Invalid input shape"); } } { NVTX3_SCOPED_RANGE(final_checks); TLLM_CHECK_WITH_INFO(context.allInputDimensionsSpecified(), "Input dimensions not specified"); TLLM_CHECK_WITH_INFO(context.allInputShapesSpecified(), "Input shapes not specified"); } } void TllmRuntime::setOutputTensors(SizeType contextIndex, TensorMap& tensorMap) { NVTX3_FUNC_RANGE(); auto& context = getContext(contextIndex); for (std::int32_t i = 0; i < mEngine->getNbIOTensors(); ++i) { auto const name = mEngine->getIOTensorName(i); if (mEngine->getTensorIOMode(name) == nvinfer1::TensorIOMode::kOUTPUT) { auto const dims = context.getTensorShape(name); auto const engineDtype = mEngine->getTensorDataType(name); auto pos = tensorMap.find(name); if (pos != tensorMap.end()) { auto const& tensor = pos->second; auto const tensorDtype = tensor->getDataType(); // WAR: TRT does not support mixed FP8 and FP16 input, so engine expects FP16 tensors. TLLM_CHECK_WITH_INFO(tensorDtype == engineDtype || (tensorDtype == nvinfer1::DataType::kFP8 && engineDtype == nvinfer1::DataType::kHALF), "%s: expected type %d, provided type %d", name, static_cast(engineDtype), static_cast(tensorDtype)); tensor->reshape(dims); context.setTensorAddress(name, tensor->data()); } else { auto tensor = ITensor::SharedPtr(mBufferManager.gpu(dims, engineDtype)); tensorMap.insert(pos, std::make_pair(name, tensor)); context.setTensorAddress(name, tensor->data()); } } } } CudaStream const& TllmRuntime::getStream() const { return *mStream; }