/* * Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/common.h" #include "tensorrt_llm/runtime/loraCache.h" #include "tensorrt_llm/runtime/loraModule.h" #include "tensorrt_llm/runtime/modelConfig.h" #include "tensorrt_llm/runtime/worldConfig.h" #include namespace tensorrt_llm::runtime { /** * \brief Manages LoRA tensors. * \details Handles formatting input tensors and populating trt engine params related to LoRA. */ class LoraManager { public: using TensorPtr = ITensor::SharedPtr; using ReqIdsVec = std::vector; using TensorMap = runtime::StringPtrMap; using LoraWeightsTensorPtr = TensorPtr; using LoraConfigTensorPtr = TensorPtr; using LoraReqTensors = std::tuple; using TaskIdType = std::int64_t; using PeftValues = std::shared_ptr> const; using PeftTable = std::map>>; explicit LoraManager() {} /** * \brief Sets up and configures LoraManager. Allocates and needed device / host memory * \param[in] modelConfig: a ModelConfig. * \param[in] worldConfig: a WorldConfig * \param[in] manager: and BufferManager used to allocate memory */ void create(ModelConfig const& modelConfig, WorldConfig const& worldConfig, BufferManager const& manager); /** * \brief same as fillInputTensors but for an entire batch */ void fillInputTensors(TensorPtr weightsPtrs, TensorPtr adapterSizes, PeftTable const& peftTable, ReqIdsVec const& reqIds, std::vector const& reqBeamWidth, ModelConfig const& modelConfig, WorldConfig const& worldConfig); /** * \brief fill batch input tensors for LoRA. This method fills on batch slot. * \param[out] weightsPtrs: the tensor of pointers to lora weights to fill. * (ie for `*_lora_weights_pointers_*` fields) * \param[out] adapterSizes: the adapter sizes tensor to fill * (ie for `*lora_low_rank_*` fields) * \param[in] peftTable: reqId to LoraCache::Values * \param[in] batchIdx: the request batch index * \param[in] beamWidth: the request beam width * \param[in] modelConfig: a ModelConfig * \param[in] worldConfig: a WorldConfig */ void fillInputTensors(TensorPtr weightsPtrs, TensorPtr adapterSizes, PeftValues const peftValues, SizeType batchIdx, SizeType beamWidth, ModelConfig const& modelConfig, WorldConfig const& worldConfig); /** * \brief fill tensor map for trt engine context * \param[out] inputTensors: the tensor map to fill * \param[in] weightsPtrs: tensor of weights pointers as filled in fillInputTensors * \param[in] adapterSizes: tensor of adapter sizes as filled in fillInputTensors * \param[in] modelConfig: a ModelConfig * \param[in] worldConfig: a WorldConfig */ void insertInputTensors(TensorMap& inputTensors, TensorPtr weightsPtrs, TensorPtr adapterSizes, ModelConfig const& modelConfig, WorldConfig const& worldConfig) const; private: std::unordered_map mModuleIdToModule; std::unordered_map mModuleOffset; }; } // namespace tensorrt_llm::runtime