# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import numpy as np import torch from parameterized import parameterized from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import unittest_name_func class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([ ('int32', (256, ), 0), ('int32', (256, ), -1), ('float32', (3, 16), 0), ('float32', (3, 16), 1), ('float32', (3, 16), -2), ('float16', (5, 6, 8), 1), ('float16', (5, 6, 8), 2), ('float16', (5, 6, 8), -3), ], name_func=unittest_name_func) def test_cumsum(self, dtype, x_shape, dim): if 'float' in dtype: x_data = torch.rand( x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) else: x_data = torch.randint( -100, 100, x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.cumsum(x, dim=dim).trt_tensor output.name = 'output' network.mark_output(output) build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig(fp16=(dtype == 'float16'))) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'x': x_data.numpy()}) ref = torch.cumsum(x_data.cuda(), dim=dim) tols = { "float32": { "rtol": 1e-05, "atol": 1e-05 }, "float16": { "rtol": 1e-02, "atol": 1e-02 }, "int32": { "rtol": 0, "atol": 0 }, } np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], **tols[dtype])