# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np # isort: off import torch import tensorrt as trt # isort: on import os import sys from parameterized import parameterized from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import skip_bf16_pre_ampere, unittest_name_func class TestMatmul(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def _matmul(self, m, n, k, dtype, ta, tb): shape1 = (k, m) if ta else (m, k) mat1 = torch.randn( shape1, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) * 1e-1 shape2 = (n, k) if tb else (k, n) mat2 = torch.randn( shape2, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) * 1e-1 builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=mat1.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) y = Tensor(name='y', shape=mat2.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.matmul(x, y, transa=ta, transb=tb).trt_tensor output.name = 'output' network.mark_output(output) output.dtype = tensorrt_llm.str_dtype_to_trt(dtype) build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig( fp16=(dtype == 'float16'), bf16=(dtype == 'bfloat16'), precision_constraints='obey', memory_pool_limits={trt.MemoryPoolType.WORKSPACE: 33554432})) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'x': mat1, 'y': mat2}) if ta: mat1 = mat1.cuda().transpose(0, 1) if tb: mat2 = mat2.cuda().transpose(0, 1) tols = { "float32": { "rtol": 1e-05, "atol": 1e-05 }, "float16": { "rtol": 1e-02, "atol": 1e-02 }, "bfloat16": { "rtol": 1e-02, "atol": 1e-02 }, } if dtype != "float32": mat1 = mat1.cuda() mat2 = mat2.cuda() else: mat1 = mat1.cpu() mat2 = mat2.cpu() ref = torch.matmul(mat1, mat2).to(torch.float32) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'].to(torch.float32), **tols[dtype]) @parameterized.expand([('float16', False, False), ('float16', False, True), ('float16', True, False), ('float16', True, True), ('bfloat16', True, False), ('bfloat16', True, True), ('float32', False, False), ('float32', False, True), ('float32', True, False), ('float32', True, True)], name_func=unittest_name_func) def test_matmul(self, dtype, transa, transb): # Skip tests that are not supported in pre-ampere architecture skip_bf16_pre_ampere(dtype) bs = 2 inseq = 16 hidden_size = 768 tp = 1 # qkv_gemm self._matmul(bs * inseq, 3 * hidden_size // tp, hidden_size, dtype, transa, transb) # mlp_gemm_1 self._matmul(bs * inseq, 4 * hidden_size // tp, hidden_size, dtype, transa, transb) def test_matmul_broadcast(self): dtype = 'float32' x_data = torch.randn(16, 4, 4, 5) y_data = torch.randn(16, 1, 5, 4) builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) y = Tensor(name='y', shape=y_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.matmul(x, y).trt_tensor output.name = 'output' network.mark_output(output) build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'x': x_data.numpy(), 'y': y_data.numpy(), }) ref = torch.matmul(x_data, y_data) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5)