# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from parameterized import parameterized from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor from tensorrt_llm._utils import str_dtype_to_torch class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([ ( [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], ], [ [1, 0, 2], [0, 2, 1], ], [[1.0, 1.1, 1.2], [2.0, 2.1, 2.2]], 0, ), ([[1, 2, 3], [4, 5, 6]], [[1, 2], [0, 1]], [[-1, -2], [-3, -4]], 1), ( [[[-3.0, -2.0, -1.0, 10.0, -25.0]], [[0.0, 1.0, 2.0, -2.0, -1.0]]], [[[1, 2, 3, 0, 4]], [[4, 1, 2, 3, 0]]], [[[-1.0, 2.4, 3.2, 10.8, 8.9]], [[0, -11.2, 34.2, 223.9, -100]]], 2, ), ]) def test_scatter(self, input_data=[[[-3.0, -2.0, -1.0, 10.0, -25.0]], [[0.0, 1.0, 2.0, -2.0, -1.0]]], indices=[[[1, 2, 3, 0, 4]], [[4, 1, 2, 3, 0]]], updates=[[[-1.0, 2.4, 3.2, 10.8, 8.9]], [[0, -11.2, 34.2, 223.9, -100]]], dim=2): dtype = 'float32' torch_dtype = str_dtype_to_torch(dtype) input_data = input_data if isinstance( input_data, torch.Tensor) else torch.tensor(input_data) indices = indices if isinstance( indices, torch.Tensor) else torch.tensor(indices).int() updates = updates if isinstance(updates, torch.Tensor) else torch.tensor(updates) input_data = input_data.to(torch_dtype) updates = updates.to(torch_dtype) builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input_t = Tensor(name='input', shape=input_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) indices_t = Tensor(name='indices', shape=indices.shape, dtype=tensorrt_llm.str_dtype_to_trt('int32')) updates_t = Tensor(name='updates', shape=updates.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.scatter(input_t, dim=dim, indices=indices_t, updates=updates_t) output = output.trt_tensor output.name = 'output' network.mark_output(output) build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer( feed_dict={ 'input': input_data.numpy(), 'indices': indices.numpy(), 'updates': updates.numpy(), }) ref = torch.scatter(input_data, dim=dim, index=indices.to(dtype=torch.int64), src=updates) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5) # print(ref) # print(outputs['output']) return