# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module test_bert test bert examples.""" import pytest from defs.common import convert_weights, venv_check_call, venv_mpi_check_call from defs.conftest import get_device_count, get_sm_version from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) # # Build parameters @pytest.mark.parametrize( "model, hf_bert_model_root", [("BertModel", 'bert/bert-base-uncased'), ("BertForQuestionAnswering", 'bert/bert-base-cased-squad2'), ("BertForSequenceClassification", 'bert/bert-base-uncased-yelp-polarity'), ("RobertaModel", 'bert/roberta-base'), ("RobertaForQuestionAnswering", 'bert/roberta-base-squad2'), ("RobertaForSequenceClassification", 'bert/twitter-roberta-base-emotion')]) @pytest.mark.parametrize("dtype", ["float32", "float16"]) @pytest.mark.parametrize("pp_size", [1], ids=lambda pp_size: f'pp:{pp_size}') @pytest.mark.parametrize("tp_size", [1, 2], ids=lambda tp_size: f'tp:{tp_size}') @pytest.mark.parametrize( "use_attention_plugin, context_fmha_type", [(True, 'enabled'), (True, 'enabled_with_fp32_acc'), (True, 'disabled'), (False, 'disabled')], ids=[ 'use_attention_plugin-enable_context_fmha', 'use_attention_plugin-enable_context_fmha_fp32_acc', 'use_attention_plugin-disable_context_fmha', 'disable_attention_plugin-disable_context_fmha', ]) @pytest.mark.parametrize( "remove_input_padding", [True, False], ids=["enable_remove_input_padding", "disable_remove_input_padding"]) # Run parameters @pytest.mark.parametrize("compare_hf", [True], ids=["compare_hf"]) def test_llm_bert_general(bert_example_root, llm_venv, model, dtype, pp_size, tp_size, use_attention_plugin, context_fmha_type, hf_bert_model_root, bert_model_root, compare_hf, cmodel_dir, engine_dir, remove_input_padding): "Run bert for float16 and float32" world_size = tp_size * pp_size if get_device_count() < world_size: pytest.skip( f"Running world size {world_size} on a node with only {get_device_count()} devices. Skip the test..." ) print("Locate model checkpoints in test storage...") hf_model_name, model_ckpt_path = bert_model_root remove_padding = remove_input_padding if not use_attention_plugin: remove_padding = False else: if get_sm_version() >= 100 and get_sm_version() < 120: pytest.skip("Attention plugin is not supported on SM100") # Convert checkpoints converted_weight_dir = convert_weights(llm_venv=llm_venv, example_root=bert_example_root, cmodel_dir=cmodel_dir, model=model, model_path=model_ckpt_path, data_type=dtype, tp_size=tp_size) # Build Engine bert_engine_dir = f"{engine_dir}/{model}/{world_size}-gpus/{dtype}/remove_padding_{remove_padding}" build_cmd = [ "trtllm-build", f"--checkpoint_dir={converted_weight_dir}", f"--output_dir={bert_engine_dir}", "--max_batch_size=8", ] if use_attention_plugin: build_cmd.append(f"--bert_attention_plugin={dtype}") else: build_cmd.append(f"--bert_attention_plugin=disable") if remove_input_padding and use_attention_plugin: build_cmd.extend(["--remove_input_padding=enable"]) else: build_cmd.extend(["--remove_input_padding=disable"]) if context_fmha_type == 'enabled': build_cmd.extend(["--context_fmha=enable"]) if context_fmha_type == 'enabled_with_fp32_acc': build_cmd.extend(["--bert_context_fmha_fp32_acc=enable"]) check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) # Run Engine print("Run inference...") run_cmd = [ f"{bert_example_root}/run.py", f"--engine_dir={bert_engine_dir}", f"--hf_model_dir={model_ckpt_path}", ] if remove_input_padding and use_attention_plugin: run_cmd.extend(["--remove_input_padding"]) if compare_hf: run_cmd.extend(["--run_hf_test"]) if world_size == 1: venv_check_call(llm_venv, run_cmd) else: venv_mpi_check_call( llm_venv, ["mpirun", "-n", str(world_size), "--allow-run-as-root"], run_cmd)