/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/cudaBf16Wrapper.h" #include "tensorrt_llm/common/cudaFp8Utils.h" #include "tensorrt_llm/kernels/gptKernels.h" #include "tensorrt_llm/kernels/kvCacheUtils.h" #include #include #include #include #include namespace tensorrt_llm { namespace kernels { //////////////////////////////////////////////////////////////////////////////////////////////////// #define CHECK_CUDA(call) \ do \ { \ cudaError_t status_ = call; \ if (status_ != cudaSuccess) \ { \ fprintf(stderr, "CUDA error (%s:%d): %s\n", __FILE__, __LINE__, cudaGetErrorString(status_)); \ exit(1); \ } \ } while (0) //////////////////////////////////////////////////////////////////////////////////////////////////// /// Round up to next higher power of 2 (return x if it's already a power /// of 2). inline int pow2roundup(int x) { if (x < 0) return 0; --x; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x + 1; } //////////////////////////////////////////////////////////////////////////////////////////////////// // The structure of parameters for the masked multihead attention kernel. // // We use the following terminology to describe the different dimensions. // // B: Batch size (number of sequences), // L: Sequence length, // D: Hidden dimension, // H: Number of heads, // Dh: Hidden dimension per head - Dh = D / H. template struct Multihead_attention_params_base { // The output buffer. Dimensions B x D. T* out = nullptr; // The input Qs and the associated bias. Dimensions B x D and D, resp. const T *q = nullptr, *q_bias = nullptr; // The input Ks and the associated bias. Dimensions B x D and D, resp. const T *k = nullptr, *k_bias = nullptr; // The input Vs and the associated bias. Dimensions B x D and D, resp. const T *v = nullptr, *v_bias = nullptr; // The indirections to use for cache when beam sampling. const int* cache_indir = nullptr; // scales const float* query_weight_output_scale = nullptr; const float* attention_qk_scale = nullptr; const float* attention_output_weight_input_scale_inv = nullptr; // Stride to handle the case when KQV is a single buffer int stride = 0; // The batch size. int batch_size = 0; // The beam width int beam_width = 0; // The sequence length. // TODO: change name max_seq_len int memory_max_len = 0; // The number of heads (H). int num_heads = 0; // Controls MHA/MQA/GQA int num_kv_heads = 0; // The hidden dimension per head (Dh). int hidden_size_per_head = 0; // Rotary position embedding type PositionEmbeddingType position_embedding_type = PositionEmbeddingType::kLEARNED_ABSOLUTE; // The per-head latent space reserved for rotary embeddings. int rotary_embedding_dim = 0; float rotary_embedding_base = 0.0f; RotaryScalingType rotary_embedding_scale_type = RotaryScalingType::kNONE; float rotary_embedding_scale = 0.0f; int rotary_embedding_max_positions = 0; // The current timestep. TODO Check that do we only this param in cross attention? int timestep = 0; // The current timestep of each sentences (support different timestep for different sentences) // The 1.f / sqrt(Dh). Computed on the host. float inv_sqrt_dh = 0.0f; // If relative position embedding is used const T* relative_attention_bias = nullptr; int relative_attention_bias_stride = 0; int max_distance = 0; // The slope per head of linear position bias to attention score (H). const T* linear_bias_slopes = nullptr; const T* ia3_key_weights = nullptr; const T* ia3_value_weights = nullptr; const int* ia3_tasks = nullptr; const float* qkv_scale_quant_orig = nullptr; const float* attention_out_scale_orig_quant = nullptr; const float* kv_scale_orig_quant = nullptr; const float* kv_scale_quant_orig = nullptr; bool int8_kv_cache = false; bool fp8_kv_cache = false; // Multi-block setups bool multi_block_mode = false; // Number of streaming processors on the device. // Tune block size to maximum occupancy. int multi_processor_count = 1; mutable int timesteps_per_block = -1; mutable int seq_len_tile = -1; mutable int max_seq_len_tile = -1; // The partial output buffer. Dimensions max_seq_len_tile x B x D. (for each timestep only seq_len_tile x B x D is // needed) T* partial_out = nullptr; // ThreadBlock sum. Dimensions max_seq_len_tile x 1. (for each timestep only seq_len_tile x 1 is needed) float* partial_sum = nullptr; // ThreadBlock max. Dimensions max_seq_len_tile x 1. (for each timestep only seq_len_tile x 1 is needed) float* partial_max = nullptr; // threadblock counter to identify the complete of partial attention computations int* block_counter = nullptr; const int* memory_length_per_sample = nullptr; }; template struct Multihead_attention_params; // self-attention params template struct Multihead_attention_params : public Multihead_attention_params_base { static constexpr bool DO_CROSS_ATTENTION = false; int max_decoder_seq_len = 0; // allows to exit attention early bool* finished = nullptr; // required in case of masked attention with different length const int* length_per_sample = nullptr; // input lengths to identify the paddings (i.e. input seq < padding < new generated seq). const int* input_lengths = nullptr; }; template using Masked_multihead_attention_params = Multihead_attention_params; // cross-attention params template struct Multihead_attention_params : public Multihead_attention_params_base { static constexpr bool DO_CROSS_ATTENTION = true; int max_decoder_seq_len = 0; // allows to exit attention early bool* finished = nullptr; // required in case of masked attention with different length const int* length_per_sample = nullptr; // input lengths to identify the paddings (i.e. input seq < padding < new generated seq). const int* input_lengths = nullptr; }; template using Cross_multihead_attention_params = Multihead_attention_params; //////////////////////////////////////////////////////////////////////////////////////////////////// #define DECLARE_MMHA_NORMAL_AND_PAGED(T) \ void masked_multihead_attention(const Masked_multihead_attention_params& params, \ const KVBlockArray& block_array, const cudaStream_t& stream); \ void masked_multihead_attention(const Masked_multihead_attention_params& params, \ const KVLinearBuffer& kv_cache_buffer, const cudaStream_t& stream); \ void masked_multihead_attention(const Cross_multihead_attention_params& params, \ const KVBlockArray& block_array, const cudaStream_t& stream); \ void masked_multihead_attention(const Cross_multihead_attention_params& params, \ const KVLinearBuffer& kv_cache_buffer, const cudaStream_t& stream); DECLARE_MMHA_NORMAL_AND_PAGED(float); DECLARE_MMHA_NORMAL_AND_PAGED(uint16_t); #ifdef ENABLE_BF16 DECLARE_MMHA_NORMAL_AND_PAGED(__nv_bfloat16); #endif #undef DECLARE_MMHA_NORMAL_AND_PAGED //////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernels } // namespace tensorrt_llm