# Falcon This document shows how to build and run a Falcon model in TensorRT-LLM on single GPU, single node multi-GPU, and multi-node multi-GPU. - [Falcon](#falcon) - [Overview](#overview) - [Support Matrix](#support-matrix) - [Usage](#usage) - [1. Download weights from HuggingFace Transformers](#1-download-weights-from-huggingface-transformers) - [2. Convert weights from HF Transformers to TensorRT-LLM format](#2-convert-weights-from-hf-transformers-to-tensorrt-llm-format) - [3. Build TensorRT engine(s)](#3-build-tensorrt-engines) - [4. Run summarization task with the TensorRT engine(s)](#4-run-summarization-task-with-the-tensorrt-engines) - [FP8 Post-Training Quantization](#fp8-post-training-quantization) - [Groupwise quantization (AWQ)](#groupwise-quantization-awq) - [W4A16 AWQ with FP8 GEMM (W4A8 AWQ)](#w4a16-awq-with-fp8-gemm-w4a8-awq) - [Troubleshooting](#troubleshooting) - [1. The HuggingFace Falcon may raise an error when using the `accelerate` package.](#1-the-huggingface-falcon-may-raise-an-error-when-using--the-accelerate-package) ## Overview The TensorRT-LLM Falcon implementation can be found in [tensorrt_llm/models/falcon/model.py](../../tensorrt_llm/models/falcon/model.py). The TensorRT-LLM Falcon example code is located in [`examples/falcon`](./). There is one main file: * [`convert_checkpoint.py`](./convert_checkpoint.py) to convert a checkpoint from the [HuggingFace (HF) Transformers](https://github.com/huggingface/transformers) format to the TensorRT-LLM format. In addition, there are two shared files in the parent folder [`examples`](../) for inference and evaluation: * [`../run.py`](../run.py) to run the inference on an input text; * [`../summarize.py`](../summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset. ## Support Matrix * FP16 * BF16 * FP8 * FP8 KV CACHE * Groupwise quantization (AWQ) * Tensor Parallel * STRONGLY TYPED ## Usage The next two sections describe how to convert the weights from the [HuggingFace (HF) Transformers](https://github.com/huggingface/transformers) format to the TensorRT-LLM format. ### 1. Download weights from HuggingFace Transformers Install the dependency packages and setup `git-lfs`. ```bash # Install dependencies pip install -r requirements.txt # Setup git-lfs git lfs install ``` There are four HF checkpoints available. Use one of the following commands to fetch the checkpoint you are interested in. Follow the guides here https://huggingface.co/docs/transformers/main/en/model_doc/falcon. ```bash # falcon-rw-1b git clone https://huggingface.co/tiiuae/falcon-rw-1b falcon/rw-1b # falcon-7b-instruct git clone https://huggingface.co/tiiuae/falcon-7b-instruct falcon/7b-instruct # falcon-40b-instruct git clone https://huggingface.co/tiiuae/falcon-40b-instruct falcon/40b-instruct # falcon-180b git clone https://huggingface.co/tiiuae/falcon-180B falcon/180b ``` ### 2. Convert weights from HF Transformers to TensorRT-LLM format The [`convert_checkpoint.py`](./convert_checkpoint.py) script converts HF weights to TensorRT-LLM checkpoints. The number of checkpoint files (in .safetensors format) is same to the number of GPUs used to run inference. ```bash # falcon-rw-1b: single gpu, dtype float16 python3 convert_checkpoint.py --model_dir ./falcon/rw-1b \ --dtype float16 \ --output_dir ./falcon/rw-1b/trt_ckpt/fp16/1-gpu/ # falcon-7b-instruct: single gpu, dtype bfloat16 python3 convert_checkpoint.py --model_dir ./falcon/7b-instruct \ --dtype bfloat16 \ --output_dir ./falcon/7b-instruct/trt_ckpt/bf16/1-gpu/ # falcon-40b-instruct: 2-way tensor parallelism python3 convert_checkpoint.py --model_dir ./falcon/40b-instruct \ --dtype bfloat16 \ --output_dir ./falcon/40b-instruct/trt_ckpt/bf16/tp2-pp1/ \ --tp_size 2 # falcon-40b-instruct: 2-way tensor parallelism and 2-way pipeline parallelism python3 convert_checkpoint.py --model_dir ./falcon/40b-instruct \ --dtype bfloat16 \ --output_dir ./falcon/40b-instruct/trt_ckpt/bf16/tp2-pp2/ \ --tp_size 2 \ --pp_size 2 # falcon-180b: 8-way tensor parallelism, loading weights shard-by-shard python3 convert_checkpoint.py --model_dir ./falcon/180b \ --dtype bfloat16 \ --output_dir ./falcon/180b/trt_ckpt/bf16/tp8-pp1/ \ --tp_size 8 \ --load_by_shard \ --workers 8 # falcon-180b: 4-way tensor parallelism and 2-way pipeline parallelism, loading weights shard-by-shard python3 convert_checkpoint.py --model_dir ./falcon/180b \ --dtype bfloat16 \ --output_dir ./falcon/180b/trt_ckpt/bf16/tp4-pp2/ \ --tp_size 4 \ --pp_size 2 \ --load_by_shard \ --workers 8 ``` Note that in order to use N-way tensor parallelism, the number of attention heads must be a multiple of N. For example, you can't configure 2-way tensor parallelism for [falcon-7b](https://huggingface.co/tiiuae/falcon-7b) or [falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct), because the number of attention heads is 71 (not divisible by 2). ### 3. Build TensorRT engine(s) The `trtllm-build` command builds TensorRT-LLM engines from TensorRT-LLM checkpoints. The number of engine files is also same to the number of GPUs used to run inference. Normally, the `trtllm-build` command only requires a single GPU, but you can enable parallel building by passing the number of GPUs to the `--workers` argument. ```bash # falcon-rw-1b trtllm-build --checkpoint_dir ./falcon/rw-1b/trt_ckpt/fp16/1-gpu/ \ --gemm_plugin float16 \ --output_dir ./falcon/rw-1b/trt_engines/fp16/1-gpu/ # falcon-7b-instruct # Enabling --gpt_attention_plugin is necessary for rotary positional embedding (RoPE) trtllm-build --checkpoint_dir ./falcon/7b-instruct/trt_ckpt/bf16/1-gpu/ \ --gemm_plugin bfloat16 \ --remove_input_padding enable \ --gpt_attention_plugin bfloat16 \ --output_dir ./falcon/7b-instruct/trt_engines/bf16/1-gpu/ # falcon-40b-instruct: 2-way tensor parallelism trtllm-build --checkpoint_dir ./falcon/40b-instruct/trt_ckpt/bf16/tp2-pp1/ \ --gemm_plugin bfloat16 \ --gpt_attention_plugin bfloat16 \ --output_dir ./falcon/40b-instruct/trt_engines/bf16/tp2-pp1/ # falcon-40b-instruct: 2-way tensor parallelism and 2-way pipeline parallelism trtllm-build --checkpoint_dir ./falcon/40b-instruct/trt_ckpt/bf16/tp2-pp2/ \ --gemm_plugin bfloat16 \ --gpt_attention_plugin bfloat16 \ --output_dir ./falcon/40b-instruct/trt_engines/bf16/tp2-pp2/ # falcon-180b: 8-way tensor parallelism trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/bf16/tp8-pp1/ \ --gemm_plugin bfloat16 \ --gpt_attention_plugin bfloat16 \ --output_dir ./falcon/180b/trt_engines/bf16/tp8-pp1/ \ --workers 8 # falcon-180b: 4-way tensor parallelism and 2-way pipeline parallelism trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/bf16/tp4-pp2/ \ --gemm_plugin bfloat16 \ --gpt_attention_plugin bfloat16 \ --output_dir ./falcon/180b/trt_engines/bf16/tp4-pp2/ \ --workers 8 ``` If the engines are built successfully, you will see output like (falcon-rw-1b as the example): ``` ...... [12/27/2023-03:46:29] [TRT] [I] Engine generation completed in 35.0677 seconds. [12/27/2023-03:46:29] [TRT] [I] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 393 MiB, GPU 2699 MiB [12/27/2023-03:46:29] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +0, GPU +2699, now: CPU 0, GPU 2699 (MiB) [12/27/2023-03:46:29] [TRT] [I] [MemUsageStats] Peak memory usage during Engine building and serialization: CPU: 10624 MiB [12/27/2023-03:46:29] [TRT-LLM] [I] Total time of building Unnamed Network 0: 00:00:36 [12/27/2023-03:46:31] [TRT-LLM] [I] Serializing engine to ./falcon/rw-1b/trt_engines/fp16/1-gpu/rank0.engine... [12/27/2023-03:46:59] [TRT-LLM] [I] Engine serialized. Total time: 00:00:28 [12/27/2023-03:46:59] [TRT-LLM] [I] Total time of building all engines: 00:01:59 ``` ### 4. Run summarization task with the TensorRT engine(s) The `../summarize.py` script can run the built engines to summarize the articles from the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset. ```bash # falcon-rw-1b python ../summarize.py --test_trt_llm \ --hf_model_dir ./falcon/rw-1b \ --engine_dir ./falcon/rw-1b/trt_engines/fp16/1-gpu/ # falcon-7b-instruct python ../summarize.py --test_trt_llm \ --hf_model_dir ./falcon/7b-instruct \ --engine_dir ./falcon/7b-instruct/trt_engines/bf16/1-gpu/ # falcon-40b-instruct: 2-way tensor parallelism mpirun -n 2 --allow-run-as-root --oversubscribe \ python ../summarize.py --test_trt_llm \ --hf_model_dir ./falcon/40b-instruct \ --engine_dir ./falcon/40b-instruct/trt_engines/bf16/tp2-pp1/ # falcon-40b-instruct: 2-way tensor parallelism and 2-way pipeline parallelism mpirun -n 4 --allow-run-as-root --oversubscribe \ python ../summarize.py --test_trt_llm \ --hf_model_dir ./falcon/40b-instruct \ --engine_dir ./falcon/40b-instruct/trt_engines/bf16/tp2-pp2/ # falcon-180b: 8-way tensor parallelism mpirun -n 8 --allow-run-as-root --oversubscribe \ python ../summarize.py --test_trt_llm \ --hf_model_dir ./falcon/180b \ --engine_dir ./falcon/180b/trt_engines/bf16/tp8-pp1/ # falcon-180b: 4-way tensor parallelism and 2-way pipeline parallelism mpirun -n 8 --allow-run-as-root --oversubscribe \ python ../summarize.py --test_trt_llm \ --hf_model_dir ./falcon/180b \ --engine_dir ./falcon/180b/trt_engines/bf16/tp4-pp2/ ``` If the engines are run successfully, you will see output like (falcon-rw-1b as the example): ``` ...... [12/27/2023-03:57:02] [TRT-LLM] [I] TensorRT-LLM (total latency: 5.816917419433594 sec) [12/27/2023-03:57:02] [TRT-LLM] [I] TensorRT-LLM beam 0 result [12/27/2023-03:57:02] [TRT-LLM] [I] rouge1 : 15.061493342516243 [12/27/2023-03:57:02] [TRT-LLM] [I] rouge2 : 4.495335888974063 [12/27/2023-03:57:02] [TRT-LLM] [I] rougeL : 11.800002670828547 [12/27/2023-03:57:02] [TRT-LLM] [I] rougeLsum : 13.458777656925877 ``` ### FP8 Post-Training Quantization The examples below use the NVIDIA AMMO (AlgorithMic Model Optimization) toolkit for the model quantization process. First make sure AMMO toolkit is installed (see [examples/quantization/README.md](/examples/quantization/README.md#preparation)) Now quantize HF Falcon weights and export trtllm checkpoint. ```bash # Quantize HF Falcon 180B checkpoint into FP8 and export trtllm checkpoint python ../quantization/quantize.py --model_dir ./falcon/180b \ --dtype float16 \ --qformat fp8 \ --kv_cache_dtype fp8 \ --output_dir ./falcon/180b/trt_ckpt/fp8/tp8-pp1 \ --tp_size 8 # Build trtllm engines from the trtllm checkpoint trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/fp8/tp8-pp1 \ --gemm_plugin float16 \ --strongly_typed \ --output_dir ./falcon/180b/trt_engines/fp8/tp8-pp1 \ --workers 8 # Run the summarization task mpirun -n 8 --allow-run-as-root --oversubscribe \ python ../summarize.py --test_trt_llm \ --hf_model_dir ./falcon/180b \ --engine_dir ./falcon/180b/trt_engines/fp8/tp8-pp1 ``` Note that you can enable fp8 context fmha to get further acceleration by setting `--use_fp8_context_fmha enable` when building the engines. ### Groupwise quantization (AWQ) The examples below use the NVIDIA AMMO (AlgorithMic Model Optimization) toolkit for the model quantization process. First make sure AMMO toolkit is installed (see [examples/quantization/README.md](/examples/quantization/README.md#preparation)) Now quantize HF Falcon weights and export trtllm checkpoint. ```bash # Quantize HF Falcon 180B checkpoint into INT4-AWQ and export trtllm checkpoint python ../quantization/quantize.py --model_dir ./falcon/180b \ --dtype float16 \ --qformat int4_awq \ --output_dir ./falcon/180b/trt_ckpt/int4_awq/tp2 \ --tp_size 2 # Build trtllm engines from the trtllm checkpoint trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/int4_awq/tp2 \ --gemm_plugin float16 \ --output_dir ./falcon/180b/trt_engines/int4_awq/tp2 \ --workers 2 # Run the summarization task mpirun -n 2 --allow-run-as-root --oversubscribe \ python ../summarize.py --test_trt_llm \ --hf_model_dir ./falcon/180b \ --engine_dir ./falcon/180b/trt_engines/int4_awq/tp2 ``` #### W4A16 AWQ with FP8 GEMM (W4A8 AWQ) For Hopper GPUs, TRT-LLM also supports employing FP8 GEMM for accelerating linear layers. This mode is noted with `w4a8_awq` for AMMO and TRT-LLM, in which both weights and activations are converted from W4A16 to FP8 for GEMM calculation. Please make sure your system contains a Hopper GPU before trying the commands below. ```bash # Quantize HF Falcon 180B checkpoint into W4A8-AWQ and export trtllm checkpoint python ../quantization/quantize.py --model_dir ./falcon/180b \ --dtype float16 \ --qformat w4a8_awq \ --output_dir ./falcon/180b/trt_ckpt/w4a8_awq/tp2 \ --tp_size 2 # Build trtllm engines from the trtllm checkpoint trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/w4a8_awq/tp2 \ --gemm_plugin float16 \ --output_dir ./falcon/180b/trt_engines/w4a8_awq/tp2 \ --workers 2 # Run the summarization task mpirun -n 2 --allow-run-as-root --oversubscribe \ python ../summarize.py --test_trt_llm \ --hf_model_dir ./falcon/180b \ --engine_dir ./falcon/180b/trt_engines/w4a8_awq/tp2 ``` ## Troubleshooting ### 1. The HuggingFace Falcon may raise an error when using the `accelerate` package. One may find the following message. ``` Traceback (most recent call last): File "build.py", line 10, in from transformers import FalconConfig, FalconForCausalLM File "", line 1039, in _handle_fromlist File "/usr/local/lib/python3.8/dist-packages/transformers/utils/import_utils.py", line 1090, in __getattr__ value = getattr(module, name) File "/usr/local/lib/python3.8/dist-packages/transformers/utils/import_utils.py", line 1089, in __getattr__ module = self._get_module(self._class_to_module[name]) File "/usr/local/lib/python3.8/dist-packages/transformers/utils/import_utils.py", line 1101, in _get_module raise RuntimeError( RuntimeError: Failed to import transformers.models.falcon.modeling_falcon because of the following error (look up to see its traceback): ``` It may be resolved by pinning the version of `typing-extensions` package by `4.5.0`. ```bash pip install typing-extensions==4.5.0 ```