/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/logger.h" #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/common/stlUtils.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/common.h" #include "tensorrt_llm/runtime/iBuffer.h" #include "tensorrt_llm/runtime/iTensor.h" #include "tensorrt_llm/runtime/runtimeKernels.h" #include #include #include #include #include #include namespace tc = tensorrt_llm::common; namespace tr = tensorrt_llm::runtime; using TensorPtr = std::shared_ptr; using BufferPtr = std::shared_ptr; class RuntimeKernelTest : public ::testing::Test // NOLINT(cppcoreguidelines-pro-type-member-init) { protected: void SetUp() override { mDeviceCount = tc::getDeviceCount(); if (mDeviceCount == 0) { GTEST_SKIP() << "No devices. These tests will not run."; } mStream = std::make_unique(); mManager = std::make_unique(mStream); } void TearDown() override {} int mDeviceCount; std::unique_ptr mManager; tr::BufferManager::CudaStreamPtr mStream; }; namespace { template void testFill(tr::IBuffer& buffer, tr::BufferManager& manager, tr::CudaStream& stream) { T constexpr value{3}; tr::kernels::invokeFill(buffer, value, stream); auto bufferHost = manager.copyFrom(buffer, tr::MemoryType::kCPU); auto bufferPtr = tr::bufferCast(*bufferHost); auto constexpr expected = value; auto anyMismatch = false; for (std::size_t i = 0; i < buffer.getSize(); ++i) { EXPECT_EQ(bufferPtr[i], expected) << "Error at index " << i; anyMismatch |= bufferPtr[i] != expected; } ASSERT_FALSE(anyMismatch); } } // namespace TEST_F(RuntimeKernelTest, FillBufferInt8) { for (auto size : {123LLU, 1025LLU, 1LLU << 32}) { auto buffer = mManager->gpu(size, nvinfer1::DataType::kINT8); testFill(*buffer, *mManager, *mStream); } } TEST_F(RuntimeKernelTest, FillTensorInt8) { for (auto size : {123, 1025, std::numeric_limits::max()}) { auto tensor = mManager->gpu(tr::ITensor::makeShape({size, 2}), nvinfer1::DataType::kINT8); testFill(*tensor, *mManager, *mStream); } } namespace { void testAdd(tr::IBuffer& buffer, tr::BufferManager& manager, tr::CudaStream& stream) { tr::SizeType32 constexpr value{3}; manager.setZero(buffer); tr::kernels::invokeAdd(buffer, value, stream); tr::kernels::invokeAdd(buffer, value, stream); auto bufferHost = manager.copyFrom(buffer, tr::MemoryType::kCPU); auto bufferPtr = tr::bufferCast(*bufferHost); auto constexpr expected = 2 * value; auto anyMismatch = false; for (std::size_t i = 0; i < buffer.getSize(); ++i) { EXPECT_EQ(bufferPtr[i], expected) << "Error at index " << i; anyMismatch |= bufferPtr[i] != expected; } ASSERT_FALSE(anyMismatch); } } // namespace TEST_F(RuntimeKernelTest, AddBufferInt32) { for (auto size : {123, 1025}) { auto buffer = mManager->gpu(size, nvinfer1::DataType::kINT32); testAdd(*buffer, *mManager, *mStream); } } TEST_F(RuntimeKernelTest, AddTensorInt32) { for (auto size : {123, 1025}) { auto tensor = mManager->gpu(tr::ITensor::makeShape({size, size}), nvinfer1::DataType::kINT32); testAdd(*tensor, *mManager, *mStream); } } namespace { void testReduce(tr::IBuffer& buffer, tr::BufferManager& manager, tr::CudaStream& stream) { auto output = manager.gpu(1, nvinfer1::DataType::kINT32); manager.setZero(*output); tr::SizeType32 constexpr value{3}; tr::kernels::invokeFill(buffer, value, stream); tr::kernels::reduce(*output, buffer, stream); auto outputHost = manager.copyFrom(*output, tr::MemoryType::kCPU); auto* outputPtr = tr::bufferCast(*outputHost); auto const expected = buffer.getSize() * value; EXPECT_EQ(*outputPtr, expected); } } // namespace TEST_F(RuntimeKernelTest, ReduceBufferInt32) { for (auto size : {123, 1025}) { auto buffer = mManager->gpu(size, nvinfer1::DataType::kINT32); testReduce(*buffer, *mManager, *mStream); } } TEST_F(RuntimeKernelTest, Transpose) { std::vector const inputHost{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; tr::SizeType32 const batchSize{4}; auto const rowSize = static_cast(inputHost.size()) / batchSize; auto input = mManager->copyFrom(inputHost, tr::ITensor::makeShape({batchSize, rowSize}), tr::MemoryType::kGPU); TensorPtr output = mManager->gpu(tr::ITensor::makeShape({rowSize, batchSize}), nvinfer1::DataType::kINT32); tr::kernels::invokeTranspose(*output, *input, *mStream); auto outputHost = mManager->copyFrom(*output, tr::MemoryType::kCPU); auto* outputHostData = tr::bufferCast(*outputHost); for (tr::SizeType32 batchIdx = 0; batchIdx < batchSize; ++batchIdx) { for (tr::SizeType32 i = 0; i < rowSize; ++i) { auto const inputIndex = tc::flat_index2(batchIdx, i, rowSize); auto const outputIndex = tc::flat_index2(i, batchIdx, batchSize); EXPECT_EQ(outputHostData[outputIndex], inputHost[inputIndex]) << "Error at index (" << batchIdx << ',' << i << ')'; } } } TEST_F(RuntimeKernelTest, TransposeWithOutputOffset) { std::vector const inputHost{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; tr::SizeType32 const batchSize{4}; auto const rowSize = static_cast(inputHost.size()) / batchSize; TensorPtr input = mManager->copyFrom(inputHost, tr::ITensor::makeShape({batchSize, rowSize}), tr::MemoryType::kGPU); TensorPtr output = mManager->gpu(tr::ITensor::makeShape({rowSize, batchSize}), nvinfer1::DataType::kINT32); mManager->setZero(*output); for (tr::SizeType32 sliceId = 0; sliceId < batchSize; ++sliceId) { auto inputView = tr::ITensor::slice(input, sliceId, 1); tr::kernels::invokeTransposeWithOutputOffset(*output, *inputView, sliceId, *mStream); auto outputHost = mManager->copyFrom(*output, tr::MemoryType::kCPU); auto* outputHostData = tr::bufferCast(*outputHost); for (tr::SizeType32 batchIdx = 0; batchIdx < batchSize; ++batchIdx) { for (tr::SizeType32 i = 0; i < rowSize; ++i) { auto const inputIndex = tc::flat_index2(batchIdx, i, rowSize); auto const outputIndex = tc::flat_index2(i, batchIdx, batchSize); auto expected = batchIdx <= sliceId ? inputHost[inputIndex] : 0; EXPECT_EQ(outputHostData[outputIndex], expected) << "Error after slice " << sliceId << " at index (" << batchIdx << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, TransposeWithInputOffset) { std::vector const inputHost{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; tr::SizeType32 const batchSize{4}; auto const rowSize = static_cast(inputHost.size()) / batchSize; TensorPtr input = mManager->copyFrom(inputHost, tr::ITensor::makeShape({batchSize, rowSize}), tr::MemoryType::kGPU); TensorPtr output = mManager->gpu(tr::ITensor::makeShape({rowSize, batchSize}), nvinfer1::DataType::kINT32); mManager->setZero(*output); for (tr::SizeType32 sliceId = 0; sliceId < rowSize; ++sliceId) { auto outputView = tr::ITensor::slice(output, sliceId, 1); tr::kernels::invokeTransposeWithInputOffset(*outputView, *input, sliceId, *mStream); auto outputHost = mManager->copyFrom(*output, tr::MemoryType::kCPU); auto* outputHostData = tr::bufferCast(*outputHost); for (tr::SizeType32 batchIdx = 0; batchIdx < batchSize; ++batchIdx) { for (tr::SizeType32 i = 0; i < rowSize; ++i) { auto const inputIndex = tc::flat_index2(batchIdx, i, rowSize); auto const outputIndex = tc::flat_index2(i, batchIdx, batchSize); auto expected = i <= sliceId ? inputHost[inputIndex] : 0; EXPECT_EQ(outputHostData[outputIndex], expected) << "Error after slice " << sliceId << " at index (" << batchIdx << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, InclusiveScan) { auto constexpr inputLength = 10000; auto constexpr expectedOutputLength = 10000; std::vector inputHost(inputLength); std::vector expectedOutput(expectedOutputLength); tc::stl_utils::inclusiveScan(inputHost.begin(), inputHost.end(), expectedOutput.begin()); auto input = mManager->copyFrom(inputHost, tr::MemoryType::kGPU); auto output = mManager->gpu(input->getSize(), input->getDataType()); tr::kernels::invokeInclusiveSum(*output, *input, *mManager, *mStream); auto outputHost = mManager->copyFrom(*output, tr::MemoryType::kCPU); auto* outputHostPtr = tr::bufferCast(*outputHost); for (std::size_t i = 0; i < expectedOutput.size(); ++i) { EXPECT_EQ(expectedOutput[i], outputHostPtr[i]) << "Error at index " << i; } } TEST_F(RuntimeKernelTest, InclusiveScanTmp) { auto constexpr inputLength = 10000; auto constexpr expectedOutputLength = 10000; std::vector inputHost(inputLength); std::vector expectedOutput(expectedOutputLength); tc::stl_utils::inclusiveScan(inputHost.begin(), inputHost.end(), expectedOutput.begin()); auto input = mManager->copyFrom(inputHost, tr::MemoryType::kGPU); auto output = mManager->gpu(input->getSize(), input->getDataType()); auto tmp = mManager->emptyBuffer(tr::MemoryType::kGPU); tr::kernels::invokeInclusiveSum(*output, *tmp, *input, *mStream); auto outputHost = mManager->copyFrom(*output, tr::MemoryType::kCPU); auto* outputHostPtr = tr::bufferCast(*outputHost); for (std::size_t i = 0; i < expectedOutput.size(); ++i) { EXPECT_EQ(expectedOutput[i], outputHostPtr[i]) << "Error at index " << i; } } TEST_F(RuntimeKernelTest, BuildTokenMask) { tr::SizeType32 constexpr batchSize{7}; std::vector inputLengthsVec(batchSize); std::iota(inputLengthsVec.begin(), inputLengthsVec.end(), 3); auto const maxInputLength = *std::max_element(inputLengthsVec.begin(), inputLengthsVec.end()); tr::SizeType32 constexpr maxNewTokens{1}; auto const maxSeqLength = maxInputLength + maxNewTokens; TensorPtr inputLengths = mManager->copyFrom(inputLengthsVec, tr::ITensor::makeShape({batchSize, 1}), tr::MemoryType::kGPU); TensorPtr tokenMask = mManager->gpu(tr::ITensor::makeShape({batchSize, maxSeqLength}), nvinfer1::DataType::kINT32); tr::kernels::invokeBuildTokenMask(*tokenMask, *inputLengths, maxInputLength, *mStream); std::vector tokenMaskVec(tokenMask->getSize()); mManager->copy(*tokenMask, tokenMaskVec.data()); for (tr::SizeType32 i = 0; i < batchSize; ++i) { for (tr::SizeType32 j = 0; j < maxSeqLength; ++j) { auto const index = i * maxSeqLength + j; if (j < inputLengthsVec[i]) EXPECT_EQ(tokenMaskVec[index], 0) << "tokenMask should be 0 up to inputLengths[i]"; else if (j < maxInputLength) EXPECT_EQ(tokenMaskVec[index], 1) << "tokenMask should be 1 up to maxInputLength"; else EXPECT_EQ(tokenMaskVec[index], 0) << "tokenMask should be 0 after maxInputLength"; } } } TEST_F(RuntimeKernelTest, BuildAttentionMask) { tr::SizeType32 constexpr batchSize{1}; tr::SizeType32 constexpr padId{50256}; std::vector const input{padId, 287, 5093, 12, 50256, padId, 11, 30022, 263, 8776, 355, padId}; auto const maxInputLength = static_cast(input.size()); TensorPtr inputIds = mManager->copyFrom(input, tr::ITensor::makeShape({batchSize, maxInputLength}), tr::MemoryType::kGPU); TensorPtr attentionMask = mManager->copyFrom(*inputIds, tr::MemoryType::kGPU); tr::kernels::invokeBuildAttentionMask(*attentionMask, padId, *mStream); std::vector attentionMaskVec(attentionMask->getSize()); mManager->copy(*attentionMask, attentionMaskVec.data()); std::vector attentionMaskHost(input); std::for_each(attentionMaskHost.begin(), attentionMaskHost.end(), [padId](auto& x) { x = x != padId; }); for (tr::SizeType32 i = 0; i < batchSize; ++i) { for (tr::SizeType32 j = 0; j < maxInputLength; ++j) { auto const index = i * maxInputLength + j; EXPECT_EQ(attentionMaskVec[index], attentionMaskHost[index]) << "Error at index (" << i << ',' << j << ')'; } } } TEST_F(RuntimeKernelTest, ExtendAttentionMask) { tr::SizeType32 constexpr batchSize{1}; tr::SizeType32 constexpr padId{50256}; std::vector const input{padId, 287, 5093, 12, 50256, padId, 11, 30022, 263, 8776, 355, padId}; auto const maxInputLength = static_cast(input.size()); TensorPtr inputIds = mManager->copyFrom(input, tr::ITensor::makeShape({batchSize, maxInputLength}), tr::MemoryType::kGPU); TensorPtr attentionMask = mManager->copyFrom(*inputIds, tr::MemoryType::kGPU); tr::kernels::invokeBuildAttentionMask(*attentionMask, padId, *mStream); auto attentionMaskHost = mManager->copyFrom(*attentionMask, tr::MemoryType::kCPU); auto const* attentionMaskData = reinterpret_cast(attentionMaskHost->data()); auto const shape = attentionMask->getShape(); auto const nbInputs = shape.d[0]; auto const oldLength = shape.d[1]; auto const newLength = oldLength + 1; auto const newShape = tr::ITensor::makeShape({nbInputs, newLength}); std::vector attentionMaskVec(tr::ITensor::volume(newShape)); for (tr::SizeType32 i = 0; i < batchSize; ++i) { std::copy(attentionMaskData + i * oldLength, attentionMaskData + (i + 1) * oldLength, std::begin(attentionMaskVec) + i * newLength); attentionMaskVec[(i + 1) * newLength - 1] = 1; } TensorPtr newAttentionMask = mManager->gpu(newShape, nvinfer1::DataType::kINT32); mManager->setZero(*newAttentionMask); tr::kernels::invokeExtendAttentionMask(*newAttentionMask, *attentionMask, *mStream); std::vector newAttentionMaskVec(newAttentionMask->getSize()); mManager->copy(*newAttentionMask, newAttentionMaskVec.data()); for (tr::SizeType32 i = 0; i < batchSize; ++i) { for (tr::SizeType32 j = 0; j < oldLength; ++j) { auto const oldIndex = i * oldLength + j; auto const newIndex = i * newLength + j; EXPECT_EQ(attentionMaskVec[oldIndex], newAttentionMaskVec[newIndex]) << "Error at index (" << i << ',' << j << ')'; } EXPECT_EQ(attentionMaskVec[(i + 1) * newLength - 1], 1) << "Error at index (" << i << ',' << (-1) << ')'; } } TEST_F(RuntimeKernelTest, CopyInputToOutput) { std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; auto const maxInputLength = static_cast(input.size()); auto const batchSize = maxInputLength; auto const beamWidth = 5; tr::SizeType32 constexpr maxNewTokens{3}; auto const maxSeqLength = maxInputLength + maxNewTokens; tr::SizeType32 constexpr padId{50256}; std::vector inputsHost(batchSize * maxInputLength); for (tr::SizeType32 i = 0; i < batchSize; ++i) { std::copy(input.begin(), input.end(), inputsHost.begin() + i * maxInputLength); } auto inputIds = mManager->copyFrom(inputsHost, tr::ITensor::makeShape({batchSize, maxInputLength}), tr::MemoryType::kGPU); std::vector inputLengthsHost(batchSize); std::iota(inputLengthsHost.begin(), inputLengthsHost.end(), 1); auto inputLengths = mManager->copyFrom(inputLengthsHost, tr::ITensor::makeShape({batchSize}), tr::MemoryType::kGPU); TensorPtr outputIds = mManager->gpu(tr::ITensor::makeShape({batchSize, beamWidth, maxSeqLength}), nvinfer1::DataType::kINT32); tr::kernels::invokeCopyInputToOutput(*outputIds, *inputIds, *inputLengths, padId, *mStream); auto outputIdsHost = mManager->copyFrom(*outputIds, tr::MemoryType::kCPU); auto* outputIdsHostData = tr::bufferCast(*outputIdsHost); for (tr::SizeType32 b = 0; b < batchSize; ++b) { for (tr::SizeType32 beam = 0; beam < beamWidth; ++beam) { for (tr::SizeType32 i = 0; i < inputLengthsHost[b]; ++i) { auto const outputIndex = tc::flat_index3(b, beam, i, beamWidth, maxSeqLength); EXPECT_EQ(outputIdsHostData[outputIndex], input[i]) << "Error at index (" << b << ',' << i << ')'; } for (tr::SizeType32 i = inputLengthsHost[b]; i < maxInputLength; ++i) { auto const outputIndex = tc::flat_index3(b, beam, i, beamWidth, maxSeqLength); EXPECT_EQ(outputIdsHostData[outputIndex], padId) << "Error at index (" << b << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, CopyPackedInputToOutput) { std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; auto const maxInputLength = static_cast(input.size()); auto const batchSize = maxInputLength; tr::SizeType32 constexpr maxNewTokens{3}; auto const beamWidth = 5; auto const maxSeqLength = maxInputLength + maxNewTokens; tr::SizeType32 constexpr padId{50256}; std::vector inputLengthsHost(batchSize); std::iota(inputLengthsHost.begin(), inputLengthsHost.end(), 1); auto inputLengths = mManager->copyFrom(inputLengthsHost, tr::ITensor::makeShape({batchSize}), tr::MemoryType::kGPU); std::vector inputOffsetsHost(batchSize + 1); tc::stl_utils::inclusiveScan(inputLengthsHost.begin(), inputLengthsHost.end(), inputOffsetsHost.begin() + 1); auto const totalInputSize = inputOffsetsHost.back(); std::vector inputsHost(totalInputSize); for (tr::SizeType32 i = 0; i < batchSize; ++i) { std::copy(input.begin(), input.begin() + inputLengthsHost[i], inputsHost.begin() + inputOffsetsHost[i]); } auto inputIds = mManager->copyFrom(inputsHost, tr::ITensor::makeShape({1, totalInputSize}), tr::MemoryType::kGPU); TensorPtr outputIds = mManager->gpu(tr::ITensor::makeShape({batchSize, beamWidth, maxSeqLength}), nvinfer1::DataType::kINT32); auto inputOffsets = std::shared_ptr(mManager->gpu(tr::ITensor::makeShape({batchSize + 1}), nvinfer1::DataType::kINT32)); mManager->setZero(*inputOffsets); tr::kernels::invokeInclusiveSum(*tr::ITensor::slice(inputOffsets, 1), *inputLengths, *mManager, *mStream); auto inputOffsetsHost2 = mManager->copyFrom(*inputOffsets, tr::MemoryType::kCPU); auto* inputOffsetsHost2Ptr = tr::bufferCast(*inputOffsetsHost2); for (std::size_t b = 0; b < inputOffsetsHost.size(); ++b) { EXPECT_EQ(inputOffsetsHost[b], inputOffsetsHost2Ptr[b]) << "Error at index " << b; } tr::kernels::invokeCopyPackedInputToOutput(*outputIds, *inputIds, *inputOffsets, maxInputLength, padId, *mStream); auto outputIdsHost = mManager->copyFrom(*outputIds, tr::MemoryType::kCPU); auto* outputIdsHostData = tr::bufferCast(*outputIdsHost); for (tr::SizeType32 b = 0; b < batchSize; ++b) { for (tr::SizeType32 beam = 0; beam < beamWidth; ++beam) { for (tr::SizeType32 i = 0; i < inputLengthsHost[b]; ++i) { auto const outputIndex = tc::flat_index3(b, beam, i, beamWidth, maxSeqLength); EXPECT_EQ(outputIdsHostData[outputIndex], input[i]) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } for (tr::SizeType32 i = inputLengthsHost[b]; i < maxInputLength; ++i) { auto const outputIndex = tc::flat_index3(b, beam, i, beamWidth, maxSeqLength); EXPECT_EQ(outputIdsHostData[outputIndex], padId) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, CopyInputToOutputTransposed) { std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; auto const maxInputLength = static_cast(input.size()); auto const batchSize = maxInputLength; auto const beamWidth = 5; tr::SizeType32 constexpr maxNewTokens{3}; auto const maxSeqLength = maxInputLength + maxNewTokens; tr::SizeType32 constexpr padId{50256}; std::vector inputsHost(batchSize * maxInputLength); for (tr::SizeType32 i = 0; i < batchSize; ++i) { std::copy(input.begin(), input.end(), inputsHost.begin() + i * maxInputLength); } auto inputIds = mManager->copyFrom(inputsHost, tr::ITensor::makeShape({batchSize, maxInputLength}), tr::MemoryType::kGPU); std::vector inputLengthsHost(batchSize); std::iota(inputLengthsHost.begin(), inputLengthsHost.end(), 1); auto inputLengths = mManager->copyFrom(inputLengthsHost, tr::ITensor::makeShape({batchSize}), tr::MemoryType::kGPU); TensorPtr outputIds = mManager->gpu(tr::ITensor::makeShape({maxSeqLength, batchSize, beamWidth}), nvinfer1::DataType::kINT32); tr::kernels::invokeCopyInputToOutputTransposed(*outputIds, *inputIds, *inputLengths, padId, *mStream); auto outputIdsHost = mManager->copyFrom(*outputIds, tr::MemoryType::kCPU); auto* outputIdsHostData = tr::bufferCast(*outputIdsHost); std::cout << *outputIdsHost; for (tr::SizeType32 b = 0; b < batchSize; ++b) { for (tr::SizeType32 beam = 0; beam < beamWidth; ++beam) { for (tr::SizeType32 i = 0; i < inputLengthsHost[b]; ++i) { auto const outputIndex = tc::flat_index3(i, b, beam, batchSize, beamWidth); EXPECT_EQ(outputIdsHostData[outputIndex], input[i]) << "Error at index (" << b << ',' << i << ')'; } for (tr::SizeType32 i = inputLengthsHost[b]; i < maxInputLength; ++i) { auto const outputIndex = tc::flat_index3(i, b, beam, batchSize, beamWidth); EXPECT_EQ(outputIdsHostData[outputIndex], padId) << "Error at index (" << b << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, CopyPackedInputToOutputTransposed) { std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; auto const maxInputLength = static_cast(input.size()); auto const batchSize = maxInputLength; tr::SizeType32 constexpr maxNewTokens{3}; auto const beamWidth = 5; auto const maxSeqLength = maxInputLength + maxNewTokens; tr::SizeType32 constexpr padId{50256}; std::vector inputLengthsHost(batchSize); std::iota(inputLengthsHost.begin(), inputLengthsHost.end(), 1); auto inputLengths = mManager->copyFrom(inputLengthsHost, tr::ITensor::makeShape({batchSize}), tr::MemoryType::kGPU); std::vector inputOffsetsHost(batchSize + 1); tc::stl_utils::inclusiveScan(inputLengthsHost.begin(), inputLengthsHost.end(), inputOffsetsHost.begin() + 1); auto const totalInputSize = inputOffsetsHost.back(); std::vector inputsHost(totalInputSize); for (tr::SizeType32 i = 0; i < batchSize; ++i) { std::copy(input.begin(), input.begin() + inputLengthsHost[i], inputsHost.begin() + inputOffsetsHost[i]); } auto inputIds = mManager->copyFrom(inputsHost, tr::ITensor::makeShape({1, totalInputSize}), tr::MemoryType::kGPU); TensorPtr outputIds = mManager->gpu(tr::ITensor::makeShape({maxSeqLength, batchSize, beamWidth}), nvinfer1::DataType::kINT32); auto inputOffsets = std::shared_ptr(mManager->gpu(tr::ITensor::makeShape({batchSize + 1}), nvinfer1::DataType::kINT32)); mManager->setZero(*inputOffsets); tr::kernels::invokeInclusiveSum(*tr::ITensor::slice(inputOffsets, 1), *inputLengths, *mManager, *mStream); auto inputOffsetsHost2 = mManager->copyFrom(*inputOffsets, tr::MemoryType::kCPU); auto* inputOffsetsHost2Ptr = tr::bufferCast(*inputOffsetsHost2); for (std::size_t offset = 0; offset < inputOffsetsHost.size(); ++offset) { EXPECT_EQ(inputOffsetsHost[offset], inputOffsetsHost2Ptr[offset]) << "Error at index " << offset; } tr::kernels::invokeCopyPackedInputToOutputTransposed( *outputIds, *inputIds, *inputOffsets, maxInputLength, padId, *mStream); auto outputIdsHost = mManager->copyFrom(*outputIds, tr::MemoryType::kCPU); auto* outputIdsHostData = tr::bufferCast(*outputIdsHost); for (tr::SizeType32 b = 0; b < batchSize; ++b) { for (tr::SizeType32 beam = 0; beam < beamWidth; ++beam) { for (tr::SizeType32 i = 0; i < inputLengthsHost[b]; ++i) { auto const outputIndex = tc::flat_index3(i, b, beam, batchSize, beamWidth); EXPECT_EQ(outputIdsHostData[outputIndex], input[i]) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } for (tr::SizeType32 i = inputLengthsHost[b]; i < maxInputLength; ++i) { auto const outputIndex = tc::flat_index3(i, b, beam, batchSize, beamWidth); EXPECT_EQ(outputIdsHostData[outputIndex], padId) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, ScatterInt32) { tr::SizeType32 const beamWidth{3}; std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; tr::SizeType32 const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = tr::ITensor::makeShape({batchSize, inputLength}); auto const outputShape = tr::ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, tr::MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT32); mManager->setZero(*outputTensor); tr::kernels::scatterTensor(*outputTensor, *inputTensor, beamWidth, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, tr::MemoryType::kCPU); auto* outputPtr = tr::bufferCast(*outputHost); std::cout << *outputHost; for (tr::SizeType32 batchIdx = 0; batchIdx < batchSize; ++batchIdx) { for (tr::SizeType32 beam = 0; beam < beamWidth; ++beam) { for (tr::SizeType32 i = 0; i < inputLength; ++i) { auto const inputIdx = tc::flat_index2(batchIdx, i, inputLength); auto const expected = beam == 0 ? input[inputIdx] : 0; auto const outputIdx = tc::flat_index3(batchIdx, beam, i, beamWidth, inputLength); EXPECT_EQ(outputPtr[outputIdx], expected) << "Error at index (" << batchIdx << ',' << beam << ',' << i << ')'; } } } } TEST_F(RuntimeKernelTest, SplitTransposed) { tr::SizeType32 const split{2}; std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; std::vector const output{28524, 5093, 23316, 11, 263, 355, 287, 12, 4881, 30022, 8776, 257}; std::vector const output2{28524, 287, 23316, 4881, 263, 8776, 5093, 12, 11, 30022, 355, 257}; { tr::SizeType32 const batchSize{6}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = tr::ITensor::makeShape({batchSize, inputLength}); auto const outputShape = tr::ITensor::makeShape({split, batchSize, inputLength / split}); auto inputTensor = mManager->copyFrom(input, inputShape, tr::MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT32); mManager->setZero(*outputTensor); tr::kernels::splitTransposed(*outputTensor, *inputTensor, split, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, tr::MemoryType::kCPU); auto* outputPtr = tr::bufferCast(*outputHost); cudaError_t cudaerr = cudaDeviceSynchronize(); for (tr::SizeType32 i = 0; i < static_cast(input.size()); ++i) { EXPECT_EQ(outputPtr[i], output[i]); } } { tr::SizeType32 const batchSize{3}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = tr::ITensor::makeShape({batchSize, inputLength}); auto const outputShape = tr::ITensor::makeShape({split, batchSize, inputLength / split}); auto inputTensor = mManager->copyFrom(input, inputShape, tr::MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT32); mManager->setZero(*outputTensor); tr::kernels::splitTransposed(*outputTensor, *inputTensor, split, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, tr::MemoryType::kCPU); auto* outputPtr = tr::bufferCast(*outputHost); cudaError_t cudaerr = cudaDeviceSynchronize(); for (tr::SizeType32 i = 0; i < static_cast(input.size()); ++i) { EXPECT_EQ(outputPtr[i], output2[i]); } } } TEST_F(RuntimeKernelTest, ScatterHalf) { tr::SizeType32 const beamWidth{3}; std::vector const input{ 28524.F, 287.F, 5093.F, 12.F, 23316.F, 4881.F, 11.F, 30022.F, 263.F, 8776.F, 355.F, 257.F}; tr::SizeType32 const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = tr::ITensor::makeShape({batchSize, inputLength}); auto const outputShape = tr::ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, tr::MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kHALF); mManager->setZero(*outputTensor); tr::kernels::scatterTensor(*outputTensor, *inputTensor, beamWidth, *mStream); auto outputHost = mManager->copyFrom(*outputTensor, tr::MemoryType::kCPU); auto* outputPtr = tr::bufferCast(*outputHost); for (tr::SizeType32 batchIdx = 0; batchIdx < batchSize; ++batchIdx) { for (tr::SizeType32 beam = 0; beam < beamWidth; ++beam) { for (tr::SizeType32 i = 0; i < inputLength; ++i) { auto const inputIdx = tc::flat_index2(batchIdx, i, inputLength); auto const expected = beam == 0 ? input[inputIdx] : half(0.F); auto const outputIdx = tc::flat_index3(batchIdx, beam, i, beamWidth, inputLength); EXPECT_EQ(outputPtr[outputIdx], expected) << "Error at index (" << batchIdx << ',' << beam << ',' << i << ')'; } } } } namespace { template void verifyTiling(std::vector const& input, tr::ITensor const& outputTensor, tr::BufferManager& manager) { auto outputHost = manager.copyFrom(outputTensor, tr::MemoryType::kCPU); auto outputPtr = tr::bufferCast(*outputHost); auto const& shape = outputTensor.getShape(); auto batchSize = static_cast(shape.d[0]); auto beamWidth = static_cast(shape.d[1]); auto inputLength = outputTensor.getSize() / batchSize / beamWidth; for (std::size_t b = 0; b < batchSize; ++b) { for (std::size_t beam = 0; beam < beamWidth; ++beam) { for (std::size_t i = 0; i < inputLength; ++i) { auto const inputIdx = tc::flat_index2(b, i, inputLength); auto const outputIdx = tc::flat_index3(b, beam, i, beamWidth, inputLength); EXPECT_EQ(outputPtr[outputIdx], input[inputIdx]) << "Error at index (" << b << ',' << beam << ',' << i << ')'; } } } } } // namespace TEST_F(RuntimeKernelTest, TileInt32) { tr::SizeType32 const beamWidth{3}; std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; tr::SizeType32 const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = tr::ITensor::makeShape({batchSize, inputLength}); auto const outputShape = tr::ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, tr::MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT32); tr::kernels::tileTensor(*outputTensor, *inputTensor, beamWidth, *mStream); outputTensor->reshape(tr::ITensor::makeShape({batchSize, beamWidth, inputLength})); verifyTiling(input, *outputTensor, *mManager); } TEST_F(RuntimeKernelTest, TileHalf) { tr::SizeType32 const beamWidth{3}; std::vector const input{ 28524.F, 287.F, 5093.F, 12.F, 23316.F, 4881.F, 11.F, 30022.F, 263.F, 8776.F, 355.F, 257.F}; tr::SizeType32 const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = tr::ITensor::makeShape({batchSize, inputLength}); auto const outputShape = tr::ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, tr::MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kHALF); tr::kernels::tileTensor(*outputTensor, *inputTensor, beamWidth, *mStream); outputTensor->reshape(tr::ITensor::makeShape({batchSize, beamWidth, inputLength})); verifyTiling(input, *outputTensor, *mManager); } TEST_F(RuntimeKernelTest, TileInplaceInt32) { tr::SizeType32 const beamWidth{3}; std::vector const input{28524, 287, 5093, 12, 23316, 4881, 11, 30022, 263, 8776, 355, 257}; tr::SizeType32 const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = tr::ITensor::makeShape({batchSize, inputLength}); auto const outputShape = tr::ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, tr::MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT32); tr::kernels::scatterTensor(*outputTensor, *inputTensor, beamWidth, *mStream); tr::kernels::tileTensorInplace(*outputTensor, beamWidth, *mStream); outputTensor->reshape(tr::ITensor::makeShape({batchSize, beamWidth, inputLength})); verifyTiling(input, *outputTensor, *mManager); } TEST_F(RuntimeKernelTest, TileInplaceHalf) { tr::SizeType32 const beamWidth{3}; std::vector const input{ 28524.F, 287.F, 5093.F, 12.F, 23316.F, 4881.F, 11.F, 30022.F, 263.F, 8776.F, 355.F, 257.F}; tr::SizeType32 const batchSize{4}; auto const inputLength = static_cast(input.size() / batchSize); auto const inputShape = tr::ITensor::makeShape({batchSize, inputLength}); auto const outputShape = tr::ITensor::makeShape({batchSize * beamWidth, inputLength}); auto inputTensor = mManager->copyFrom(input, inputShape, tr::MemoryType::kGPU); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kHALF); tr::kernels::scatterTensor(*outputTensor, *inputTensor, beamWidth, *mStream); tr::kernels::tileTensorInplace(*outputTensor, beamWidth, *mStream); outputTensor->reshape(tr::ITensor::makeShape({batchSize, beamWidth, inputLength})); verifyTiling(input, *outputTensor, *mManager); } TEST_F(RuntimeKernelTest, TileInt8Large) { std::int8_t constexpr value{3}; tr::SizeType32 constexpr batchSize{1}; tr::SizeType32 constexpr beamWidth{2}; tr::SizeType32 const d2{2}; auto const d3 = std::numeric_limits::max(); auto const inputShape = tr::ITensor::makeShape({batchSize, d2, d3}); auto const outputShape = tr::ITensor::makeShape({batchSize * beamWidth, d2, d3}); auto inputTensor = mManager->gpu(inputShape, nvinfer1::DataType::kINT8); tr::kernels::invokeFill(*inputTensor, value, *mStream); mStream->synchronize(); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT8); tr::kernels::tileTensor(*outputTensor, *inputTensor, beamWidth, *mStream); mStream->synchronize(); auto bufferHost = mManager->copyFrom(*outputTensor, tr::MemoryType::kCPU); auto* bufferPtr = tr::bufferCast(*bufferHost); auto constexpr expected = value; for (std::size_t i = 0; i < bufferHost->getSize(); ++i) { EXPECT_EQ(bufferPtr[i], expected) << "Error at index " << i; } } TEST_F(RuntimeKernelTest, TileInplaceInt8Large) { std::int8_t constexpr value{3}; tr::SizeType32 constexpr batchSize{1}; tr::SizeType32 constexpr beamWidth{2}; tr::SizeType32 const d2{2}; auto const d3 = std::numeric_limits::max(); auto const inputShape = tr::ITensor::makeShape({batchSize, d2, d3}); auto const outputShape = tr::ITensor::makeShape({batchSize * beamWidth, d2, d3}); auto const inputBytes = tr::ITensor::volume(inputShape); auto const outputBytes = tr::ITensor::volume(outputShape); TLLM_LOG_INFO("Allocating %lu bytes for input, and %lu bytes for output.", inputBytes, outputBytes); auto inputTensor = mManager->gpu(inputShape, nvinfer1::DataType::kINT8); tr::kernels::invokeFill(*inputTensor, value, *mStream); auto outputTensor = mManager->gpu(outputShape, nvinfer1::DataType::kINT8); tr::kernels::scatterTensor(*outputTensor, *inputTensor, beamWidth, *mStream); tr::kernels::tileTensorInplace(*outputTensor, beamWidth, *mStream); auto bufferHost = mManager->copyFrom(*outputTensor, tr::MemoryType::kCPU); auto* bufferPtr = tr::bufferCast(*bufferHost); auto constexpr expected = value; for (std::size_t i = 0; i < bufferHost->getSize(); ++i) { EXPECT_EQ(bufferPtr[i], expected) << "Error at index " << i; } } namespace { void testCopyBatch(tr::SizeType64 stride, tr::BufferManager& manager, tr::CudaStream& stream) { tr::SizeType32 constexpr rows{8}; tr::SizeType32 constexpr numIndices{rows / 2}; auto const bufferShape = tr::ITensor::makeShape({rows, stride}); auto const indicesShape = tr::ITensor::makeShape({numIndices}); auto srcBufferHost = tr::BufferManager::cpu(bufferShape, nvinfer1::DataType::kINT32); auto dstBufferDevice = manager.gpu(bufferShape, nvinfer1::DataType::kINT32); auto srcOffsets = tr::BufferManager::pinned(indicesShape, nvinfer1::DataType::kINT64); auto dstOffsets = tr::BufferManager::pinned(indicesShape, nvinfer1::DataType::kINT64); auto sizes = tr::BufferManager::pinned(indicesShape, nvinfer1::DataType::kINT64); tr::kernels::invokeFill(*dstBufferDevice, 0, stream); auto* srcBufferHostPtr = tr::bufferCast(*srcBufferHost); for (tr::SizeType32 row = 0; row < rows; ++row) { for (tr::SizeType32 ci = 0; ci < stride; ++ci) { auto const idx = row * stride + ci; srcBufferHostPtr[idx] = idx; } } auto* srcOffsetsPtr = tr::bufferCast(*srcOffsets); auto* dstOffsetsPtr = tr::bufferCast(*dstOffsets); auto* sizesPtr = tr::bufferCast(*sizes); for (tr::SizeType32 idx = 0; idx < numIndices; ++idx) { // Copy rows 0, 2, 4, etc to 0, 1, 2, 3... srcOffsetsPtr[idx] = 2 * idx * stride; dstOffsetsPtr[idx] = idx * stride; sizesPtr[idx] = stride; } auto srcBufferDevice = manager.copyFrom(*srcBufferHost, tr::MemoryType::kGPU); // TODO(nkorobov): test different dataSizes copy tr::kernels::invokeCopyBatch(*srcBufferDevice, *dstBufferDevice, *srcOffsets, *dstOffsets, *sizes, stride, stream); auto dstBufferHost = manager.copyFrom(*dstBufferDevice, tr::MemoryType::kCPU); auto* dstBufferHostPtr = tr::bufferCast(*dstBufferHost); for (tr::SizeType32 idx = 0; idx < rows; ++idx) { for (tr::SizeType64 ci = 0; ci < stride; ++ci) { if (idx < numIndices && ci < sizesPtr[idx]) { auto const refIdx = srcOffsetsPtr[idx] + ci; auto const ref = srcBufferHostPtr[refIdx]; auto const outIdx = dstOffsetsPtr[idx] + ci; auto const out = dstBufferHostPtr[outIdx]; EXPECT_EQ(ref, out) << "Error at index row: " << idx << " column: " << ci << " for stride " << stride; } else { auto const outIdx = idx * stride + ci; auto const out = dstBufferHostPtr[outIdx]; EXPECT_EQ(0, out) << "Error at index row: " << idx << " column: " << ci << " for stride " << stride; } } } } } // namespace TEST_F(RuntimeKernelTest, CopyBatchStride64) { testCopyBatch(64, *mManager, *mStream); } TEST_F(RuntimeKernelTest, CopyBatchStride5) { testCopyBatch(5, *mManager, *mStream); }