# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os # isort: off import torch import tensorrt as trt #isort: on from allowed_configs import get_build_config from base_benchmark import BaseBenchmark from build import build_bert import tensorrt_llm from tensorrt_llm._utils import trt_dtype_to_torch from tensorrt_llm.runtime import TensorInfo class BERTBenchmark(BaseBenchmark): def __init__(self, args, batch_sizes, in_lens, rank, world_size): super().__init__(args.engine_dir, args.model, args.dtype, rank, world_size, args.serial_build) self.batch_sizes = batch_sizes self.in_lens = in_lens self.build_time = 0 self.mode = args.mode if args.engine_dir is not None: # Deserialize engine from engine directory self.serialize_path = os.path.join(args.engine_dir, self.engine_name) with open(self.serialize_path, 'rb') as f: engine_buffer = f.read() else: # Build engine for key, value in get_build_config(args.model).items(): setattr(self, key, value) if args.force_num_layer_1: self.num_layers = 1 if args.max_batch_size is not None: self.max_batch_size = args.max_batch_size if args.max_input_len is not None: self.max_input_len = args.max_input_len engine_buffer, build_time = build_bert(args) self.build_time = build_time assert engine_buffer is not None if args.build_only: return self.session = tensorrt_llm.runtime.Session.from_serialized_engine( engine_buffer) def get_config(self): for inlen in self.in_lens: if inlen > self.max_input_len: continue for batch_size in self.batch_sizes: if batch_size > self.max_batch_size: continue yield (batch_size, inlen) def prepare_inputs(self, config): batch_size, inlen = config[0], config[1] input_ids = torch.randint(100, (batch_size, inlen)).int().cuda() input_lengths = inlen * torch.ones( (batch_size, ), dtype=torch.int32, device='cuda') inputs = {'input_ids': input_ids, 'input_lengths': input_lengths} output_info = self.session.infer_shapes([ TensorInfo('input_ids', trt.DataType.INT32, input_ids.shape), TensorInfo('input_lengths', trt.DataType.INT32, input_lengths.shape) ]) outputs = { t.name: torch.empty(tuple(t.shape), dtype=trt_dtype_to_torch(t.dtype), device='cuda') for t in output_info } stream = torch.cuda.current_stream().cuda_stream return (inputs, outputs, stream) def run(self, inputs, config, benchmark_profiler=None): ok = self.session.run(*inputs) assert ok, "Runtime execution failed" torch.cuda.synchronize() def report(self, config, latency, percentile95, percentile99, peak_gpu_used): if self.runtime_rank == 0: line = '[BENCHMARK] ' + ( f'model_name {self.model_name} world_size {self.world_size} precision {self.dtype} ' f'batch_size {config[0]} input_length {config[1]} gpu_peak_mem(gb) {peak_gpu_used} ' f'build_time(s) {self.build_time} percentile95(ms) {percentile95} ' f'percentile99(ms) {percentile99} latency(ms) {latency}') print(line) def report(self, config, latency, percentile95, percentile99, peak_gpu_used, csv, benchmark_profiler=None): report_dict = super().get_report_dict() batch_size, inlen = config[0], config[1] report_dict["num_heads"] = self.num_heads report_dict["num_kv_heads"] = self.num_heads report_dict["num_layers"] = self.num_layers report_dict["hidden_size"] = self.hidden_size report_dict["vocab_size"] = self.vocab_size report_dict["batch_size"] = batch_size report_dict["input_length"] = inlen report_dict["output_length"] = "n/a" report_dict["latency(ms)"] = latency report_dict["build_time(s)"] = self.build_time report_dict["tokens_per_sec"] = "n/a" report_dict["percentile95(ms)"] = percentile95 report_dict["percentile99(ms)"] = percentile99 report_dict["gpu_peak_mem(gb)"] = peak_gpu_used if self.runtime_rank == 0: if csv: line = ",".join([str(v) for v in report_dict.values()]) print(line) with open(self.get_csv_filename(), "a") as file: file.write(line + "\n") else: kv_pairs = [f"{k} {v}" for k, v in report_dict.items()] line = '[BENCHMARK] ' + " ".join(kv_pairs) print(line)