/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/runtime/gptDecoderBatch.h" #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/cudaEvent.h" #include "tensorrt_llm/runtime/runtimeKernels.h" #include #include #include using namespace tensorrt_llm::runtime; namespace tc = tensorrt_llm::common; namespace tk = tensorrt_llm::kernels; namespace { SamplingConfig extractSamplingConfig(SamplingConfig const& batchSamplingConfig, SizeType batchIdx) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); SamplingConfig samplingConfig{batchSamplingConfig.beamWidth}; auto extractOptional = [&batchIdx](auto& single, auto const& batch) { using T = typename std::remove_reference_t::value_type; if (batch) { if (batch->size() > 1) single.emplace(T{batch->at(batchIdx)}); else single.emplace(T{batch->at(0)}); } }; extractOptional(samplingConfig.temperature, batchSamplingConfig.temperature); extractOptional(samplingConfig.minLength, batchSamplingConfig.minLength); extractOptional(samplingConfig.repetitionPenalty, batchSamplingConfig.repetitionPenalty); extractOptional(samplingConfig.presencePenalty, batchSamplingConfig.presencePenalty); extractOptional(samplingConfig.frequencyPenalty, batchSamplingConfig.frequencyPenalty); // sampling layers extractOptional(samplingConfig.topK, batchSamplingConfig.topK); extractOptional(samplingConfig.topP, batchSamplingConfig.topP); extractOptional(samplingConfig.randomSeed, batchSamplingConfig.randomSeed); extractOptional(samplingConfig.topPDecay, batchSamplingConfig.topPDecay); extractOptional(samplingConfig.topPMin, batchSamplingConfig.topPMin); extractOptional(samplingConfig.topPResetIds, batchSamplingConfig.topPResetIds); // beam search layer samplingConfig.beamSearchDiversityRate = batchSamplingConfig.beamSearchDiversityRate; samplingConfig.lengthPenalty = batchSamplingConfig.lengthPenalty; samplingConfig.earlyStopping = batchSamplingConfig.earlyStopping; samplingConfig.normalizeLogProbs = batchSamplingConfig.normalizeLogProbs; TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); return samplingConfig; } } // namespace GptDecoderBatch::GptDecoderBatch( std::size_t vocabSize, std::size_t vocabSizePadded, GptDecoderBatch::CudaStreamPtr stream) : mVocabSize{vocabSize} , mVocabSizePadded{vocabSizePadded} , mStream{std::move(stream)} , mBufferManager{mStream} { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto constexpr nvTokenIdType = TRTDataType::value; auto constexpr nvSizeType = TRTDataType::value; auto constexpr nvFloatType = TRTDataType::value; auto& dInput = mJointDecodingInput; auto dummyLogits = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); auto endIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType); dInput = std::make_unique(0, 0, 0, 0, std::move(dummyLogits), std::move(endIds)); dInput->sequenceLimitLength = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); dInput->lengths = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); auto& dOutput = mJointDecodingOutput; auto outputIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType); dOutput = std::make_unique(std::move(outputIds)); dOutput->newTokensSteps = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType); dOutput->parentIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvTokenIdType); mFinishedSteps = mBufferManager.emptyTensor(MemoryType::kGPU, TRTDataType::value); mDraftProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); mTargetProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); mBatchSlotsSetup = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); mBatchSlotsDecoder = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); mBatchSlotsAcceptTokens = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); mBatchSlotsAcceptLogits = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); // use batchSize many entries instead of the usual 1 dOutput->finishedSum = mBufferManager.emptyTensor(MemoryType::kPINNED, nvSizeType); mFinishedSum = mBufferManager.pinned(ITensor::makeShape({1}), nvSizeType); // we don't need dOutput->lengths because lengths are passed from outside dOutput->cumLogProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); dOutput->logProbs = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); dOutput->beamHypotheses.empty(mBufferManager); mNumDraftTokens = mBufferManager.emptyTensor(MemoryType::kGPU, nvSizeType); mCurandStates = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT8); mDraftTokenIds = mBufferManager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32); mDraftLogits = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); mTargetLogitsPtrs = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->stopWordsPtrs = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->stopWordsLens = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->badWordsPtrs = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->badWordsLens = mBufferManager.emptyTensor(MemoryType::kPINNED, TRTDataType::value); dInput->embeddingBias = mBufferManager.emptyTensor(MemoryType::kGPU, nvFloatType); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::setup(DecodingMode const& mode, SizeType maxBatchSize, SizeType maxBeamWidth, SizeType maxAttentionWindow, SizeType sinkTokenLength, SizeType maxSequenceLength, SizeType maxTokensPerStep, bool fusedDecoder, nvinfer1::DataType dtype) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK(maxBatchSize > 0); TLLM_CHECK(maxBeamWidth > 0); TLLM_CHECK(maxTokensPerStep > 0); TLLM_CHECK(maxSequenceLength > 0); mActualBatchSize = maxBatchSize; mGeneratedTokensPerStep.resize(maxBatchSize); mMaxSequenceLength = maxSequenceLength; mMaxAttentionWindow = maxAttentionWindow; mSinkTokenLength = sinkTokenLength; mMaxTokensPerStep = maxTokensPerStep; mFusedDecoder = fusedDecoder; auto const maxBatchSizeShape = ITensor::makeShape({maxBatchSize}); auto const maxBatchSizeXmaxBeamWidth = ITensor::makeShape({maxBatchSize, maxBeamWidth}); auto const maxTokensPerStepXmaxBatchSizeXmaxBeamWidth = ITensor::makeShape({maxTokensPerStep, maxBatchSize, maxBeamWidth}); auto const maxBatchSizeXmaxTokensPerStep = ITensor::makeShape({maxBatchSize, maxTokensPerStep}); auto& dInput = *mJointDecodingInput; dInput.maxLength = mMaxSequenceLength; dInput.maxAttentionWindow = mMaxAttentionWindow; dInput.sinkTokenLength = mSinkTokenLength; const_cast(*dInput.endIds).reshape(maxBatchSizeXmaxBeamWidth); auto& sequenceLimitLength = const_cast(*dInput.sequenceLimitLength); sequenceLimitLength.reshape(maxBatchSizeShape); kernels::invokeFill(sequenceLimitLength, mMaxSequenceLength, *mStream); auto& inputLengths = const_cast(*dInput.lengths); inputLengths.reshape(maxBatchSizeXmaxBeamWidth); mBufferManager.setZero(inputLengths); auto const jointOutputIdsShape = ITensor::makeShape({maxBatchSize, maxBeamWidth, maxSequenceLength}); auto& dOutput = *mJointDecodingOutput; dOutput.ids->reshape(jointOutputIdsShape); dOutput.newTokensSteps->reshape(maxTokensPerStepXmaxBatchSizeXmaxBeamWidth); mBufferManager.setZero(*dOutput.newTokensSteps); mFinishedSteps->reshape(maxTokensPerStepXmaxBatchSizeXmaxBeamWidth); mBufferManager.setZero(*mFinishedSteps); if (mFusedDecoder) { mBatchSlotsSetup->reshape(ITensor::makeShape({maxBatchSize})); mBatchSlotsDecoder->reshape(ITensor::makeShape({maxTokensPerStep, maxBatchSize})); mBatchSlotsAcceptTokens->reshape(ITensor::makeShape({maxTokensPerStep, maxBatchSize})); mBatchSlotsAcceptLogits->reshape(ITensor::makeShape({maxTokensPerStep, maxBatchSize})); } if (mMaxTokensPerStep > 1) { mDraftProbs->reshape(ITensor::makeShape( {maxBatchSize, maxTokensPerStep, maxBeamWidth, static_cast(mVocabSizePadded)})); mTargetProbs->reshape(ITensor::makeShape( {maxBatchSize, maxTokensPerStep, maxBeamWidth, static_cast(mVocabSizePadded)})); } dOutput.parentIds->reshape(jointOutputIdsShape); // use batchSize many entries instead of the usual 1 dOutput.finishedSum->reshape(maxBatchSizeShape); mBufferManager.setZero(*dOutput.finishedSum); dOutput.cumLogProbs->reshape(maxBatchSizeXmaxBeamWidth); mBufferManager.setZero(*dOutput.cumLogProbs); dOutput.logProbs->reshape(ITensor::makeShape({maxBatchSize, maxBeamWidth, mMaxSequenceLength})); mBufferManager.setZero(*dOutput.logProbs); if (maxBeamWidth > 1) { dOutput.beamHypotheses.reshape(maxBatchSize, maxBeamWidth, mMaxSequenceLength); } else { dOutput.beamHypotheses.release(); } // speculative decoding only works for beam width == 1 mDraftTokenIds->reshape(maxBatchSizeXmaxTokensPerStep); mDraftLogits->reshape( ITensor::makeShape({maxBatchSize, maxTokensPerStep, static_cast(mVocabSizePadded)})); mAcceptByLogits.resize(maxBatchSize); mNumDraftTokens->reshape(ITensor::makeShape({maxBatchSize, 1})); mCurandStates->reshape(ITensor::makeShape({maxBatchSize, sizeof(curandState_t)})); mTargetLogitsPtrs->reshape(ITensor::makeShape({maxTokensPerStep, maxBatchSize})); const_cast(*dInput.embeddingBias) .reshape(ITensor::makeShape({maxBatchSize, static_cast(mVocabSizePadded)})); const_cast(*dInput.badWordsPtrs).reshape(ITensor::makeShape({maxBatchSize})); const_cast(*dInput.badWordsLens).reshape(ITensor::makeShape({maxBatchSize})); const_cast(*dInput.stopWordsPtrs).reshape(ITensor::makeShape({maxBatchSize})); const_cast(*dInput.stopWordsLens).reshape(ITensor::makeShape({maxBatchSize})); auto const numOfDecoders = fusedDecoder ? 1 : maxBatchSize; mStreams.resize(maxBatchSize); mDecoders.resize(numOfDecoders); mDecodingInputs.resize(maxBatchSize); mDecodingOutputs.resize(maxBatchSize); mNbSteps.resize(maxBatchSize); mFinished.resize(maxBatchSize); mMaxNewTokens.resize(maxBatchSize); mBeamWidths.resize(maxBatchSize); auto const device = mStream->getDevice(); for (SizeType i = 0; i < maxBatchSize; ++i) { mStreams[i] = std::make_shared(); TLLM_CHECK(mStreams[i]->getDevice() == device); if (i < numOfDecoders) { auto maxBatchSizePerDecoder = fusedDecoder ? maxBatchSize : 1; mDecoders[i] = IGptDecoder::create(mode, dtype, maxBatchSizePerDecoder, maxBeamWidth, mVocabSize, mVocabSizePadded, mMaxSequenceLength, mStreams[i]); } mDecodingInputs[i].reset(); mDecodingOutputs[i].reset(); mNbSteps[i] = 0; mFinished[i] = true; mMaxNewTokens[i] = 0; mBeamWidths[i] = 0; mGeneratedTokensPerStep[i] = 0; } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::newRequest( SizeType batchIdx, decoder_batch::Request const& request, SamplingConfig const& samplingConfig) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK(batchIdx >= 0); auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape(); auto const batchSize = jointOutputIdsShape.d[0]; TLLM_CHECK(0 <= batchSize && batchIdx < batchSize); auto const maxBeamWidth = jointOutputIdsShape.d[1]; auto const beamWidth = samplingConfig.beamWidth; TLLM_CHECK_WITH_INFO(beamWidth <= maxBeamWidth, tc::fmtstr("Beam width (%d) must be smaller than maxBeamWidth (%d) passed to decoder setup function.", beamWidth, maxBeamWidth)); auto const& requestIds = request.ids; auto const inputLength = request.inputLen; auto const maxNewTokens = request.maxNewTokens.value_or(mMaxSequenceLength - inputLength); TLLM_CHECK_WITH_INFO(inputLength + maxNewTokens <= mMaxSequenceLength, tc::fmtstr("Input length (%d) + max new tokens (%d) must be less than max sequence length (%d).", inputLength, maxNewTokens, mMaxSequenceLength)); TLLM_CHECK(requestIds->getDataType() == TRTDataType::value); auto const endId = request.endId.value_or(-1); auto constexpr localBatchSize = 1; auto const decoderIdx = mFusedDecoder ? 0 : batchIdx; auto& stream = mStreams[decoderIdx]; BufferManager manager{stream}; // input auto& dJointInput = *mJointDecodingInput; auto& dInput = mDecodingInputs.at(batchIdx); TensorPtr endIdTensorPtr{ITensor::slice(constPointerCast(dJointInput.endIds), batchIdx, localBatchSize)}; kernels::invokeFill(*endIdTensorPtr, endId, *stream); dInput = std::make_unique( inputLength, mMaxAttentionWindow, mSinkTokenLength, localBatchSize, dJointInput.logits, endIdTensorPtr); TensorPtr embeddingBiasSlice = ITensor::slice(constPointerCast(dJointInput.embeddingBias), batchIdx, localBatchSize); if (request.embeddingBias) { TLLM_CHECK(request.embeddingBias->getShape().nbDims == 2); TLLM_CHECK(request.embeddingBias->getShape().d[0] == 1); TLLM_CHECK_WITH_INFO(request.embeddingBias->getShape().d[1] == static_cast(mVocabSize), "The embedding bias shape is not as expected. Expected last dimension to be same as vocab size: %lu.", mVocabSize); manager.copy(*request.embeddingBias, *embeddingBiasSlice); dInput->embeddingBias = embeddingBiasSlice; } else { manager.setZero(*embeddingBiasSlice); } auto setupWords = [fusedDecoder = mFusedDecoder](SharedConstPtr& inputWordsList, TensorPtr const& requestWordsList, SharedConstPtr& jointWordsPtrs, SharedConstPtr& jointWordsLens, SharedConstPtr& wordsPtrs, SharedConstPtr& wordsLens, SizeType& inputMaxStopWordsLen, SizeType& maxWordsLen, SizeType localBatchSize, SizeType batchIdx) { if (requestWordsList) { auto const wordsLen = requestWordsList->getShape().d[1]; BufferRange(*constPointerCast(jointWordsPtrs))[batchIdx] = bufferCast(*requestWordsList); bufferCast(*constPointerCast(jointWordsLens))[batchIdx] = wordsLen; // FIXME(nkorobov): this is monotonically growing size maxWordsLen = std::max(wordsLen, maxWordsLen); if (!fusedDecoder) { wordsPtrs = ITensor::slice(jointWordsPtrs, batchIdx, localBatchSize); wordsLens = ITensor::slice(jointWordsLens, batchIdx, localBatchSize); inputMaxStopWordsLen = wordsLen; } // NOTE(nkorobov): dInput->WordsList is not used in gptDecoder, but required to keep WordsList's // memory allocated inputWordsList = requestWordsList; } else { bufferCast(*constPointerCast(jointWordsLens))[batchIdx] = 0; inputMaxStopWordsLen = 0; } }; setupWords(dInput->stopWordsList, request.stopWordsList, dJointInput.stopWordsPtrs, dJointInput.stopWordsLens, dInput->stopWordsPtrs, dInput->stopWordsLens, dInput->maxStopWordsLen, mMaxStopWordsLen, localBatchSize, batchIdx); dJointInput.maxStopWordsLen = mMaxStopWordsLen; setupWords(dInput->badWordsList, request.badWordsList, dJointInput.badWordsPtrs, dJointInput.badWordsLens, dInput->badWordsPtrs, dInput->badWordsLens, dInput->maxBadWordsLen, mMaxBadWordsLen, localBatchSize, batchIdx); dJointInput.maxBadWordsLen = mMaxBadWordsLen; TensorPtr sequenceLimitLength{ ITensor::slice(constPointerCast(dJointInput.sequenceLimitLength), batchIdx, localBatchSize)}; kernels::invokeFill(*sequenceLimitLength, inputLength + maxNewTokens, *stream); dInput->sequenceLimitLength = std::move(sequenceLimitLength); TensorPtr inputLengths{ITensor::slice(constPointerCast(dJointInput.lengths), batchIdx, localBatchSize)}; kernels::invokeFill(*inputLengths, inputLength, *stream); dInput->lengths = inputLengths; // output auto& dJointOutput = *mJointDecodingOutput; auto& dOutput = mDecodingOutputs.at(batchIdx); auto const outputIdsShape = ITensor::makeShape({localBatchSize, beamWidth, mMaxSequenceLength}); TensorPtr outputIds = ITensor::slice(dJointOutput.ids, batchIdx, localBatchSize); outputIds->reshape(outputIdsShape); dOutput = std::make_unique(outputIds); dOutput->finishedSum = ITensor::slice(dJointOutput.finishedSum, batchIdx, localBatchSize); manager.setZero(*dOutput->finishedSum); dOutput->newTokensVec.resize(mMaxTokensPerStep); for (SizeType ti = 0; ti < mMaxTokensPerStep; ++ti) { TensorPtr newTokensStepView = ITensor::slice(dJointOutput.newTokensSteps, ti, localBatchSize); newTokensStepView->squeeze(0); dOutput->newTokensVec[ti] = ITensor::slice(newTokensStepView, batchIdx, localBatchSize); manager.setZero(*dOutput->newTokensVec[ti]); } // FIXME(nkorobov): we call setZero mMaxTokensPerStep times for only 1 element for (SizeType ti = 0; ti < mMaxTokensPerStep; ++ti) { TensorPtr finishedStepsView = std::move(ITensor::slice(mFinishedSteps, ti, 1)); finishedStepsView->squeeze(0); TensorPtr finishedSteps = std::move(ITensor::slice(finishedStepsView, batchIdx, localBatchSize)); manager.setZero(*finishedSteps); } // cumLogProb is mandatory for beamWidth > 1 dOutput->cumLogProbs = nullptr; if (request.computeCumLogProbs || beamWidth > 1) { dOutput->cumLogProbs = ITensor::slice(dJointOutput.cumLogProbs, batchIdx, localBatchSize); manager.setZero(*dOutput->cumLogProbs); } dOutput->logProbs = nullptr; if (request.computeLogProbs) { dOutput->logProbs = ITensor::slice(dJointOutput.logProbs, batchIdx, localBatchSize); manager.setZero(*dOutput->logProbs); } if (beamWidth > 1) { kernels::invokeFill( *IBuffer::slice(dOutput->cumLogProbs, 1, beamWidth - 1), DecodingOutput::kNegativeInfinity, *stream); dOutput->parentIds = ITensor::slice(dJointOutput.parentIds, batchIdx, localBatchSize); dOutput->parentIds->reshape(outputIdsShape); manager.setZero(*dOutput->parentIds); dOutput->beamHypotheses = dJointOutput.beamHypotheses.slice(batchIdx, localBatchSize); dOutput->beamHypotheses.init(manager, endId); } auto generatedTokensPerStep = request.generatedTokensPerStep(); if (generatedTokensPerStep > 1) { TLLM_CHECK(beamWidth == 1); auto numDraftTokens = generatedTokensPerStep - 1; TensorPtr draftTokensReqBatchSlice = std::move(ITensor::slice(mDraftTokenIds, batchIdx, 1)); draftTokensReqBatchSlice->squeeze(0); TensorPtr draftTokensReqTokensSlice = ITensor::slice(draftTokensReqBatchSlice, 0, numDraftTokens); TensorPtr draftTokensView = ITensor::view(request.draftTokens, ITensor::makeShape({numDraftTokens})); manager.copy(*draftTokensView, *draftTokensReqTokensSlice); mAcceptByLogits[batchIdx] = false; if (request.draftLogits.has_value()) { TensorPtr draftLogitsView = ITensor::view(request.draftLogits.value()); mAcceptByLogits[batchIdx] = true; TensorPtr draftLogitsReqBatchSlice = std::move(ITensor::slice(mDraftLogits, batchIdx, 1)); draftLogitsReqBatchSlice->squeeze(0); TensorPtr draftLogitsReqTokensSlice = ITensor::slice(draftLogitsReqBatchSlice, 0, numDraftTokens); manager.copy(*draftLogitsView, *draftLogitsReqTokensSlice); } auto numDraftTokensView = ITensor::slice(mNumDraftTokens, batchIdx, localBatchSize); kernels::invokeFill(*numDraftTokensView, numDraftTokens, *stream); auto const curandStatesView = ITensor::slice(mCurandStates, batchIdx, localBatchSize); auto curandState = reinterpret_cast(bufferCast(*curandStatesView)); if (samplingConfig.randomSeed.has_value()) { tk::invokeCurandInitialize( curandState, nullptr, localBatchSize, samplingConfig.randomSeed.value()[0], stream->get()); } else { tk::invokeCurandInitialize(curandState, nullptr, localBatchSize, 0, stream->get()); } } // remaining if (!mFusedDecoder) { mDecoders[decoderIdx]->setup(samplingConfig, localBatchSize, mMaxSequenceLength); } TLLM_CHECK_WITH_INFO(!mFusedDecoder || beamWidth == 1, "Fused decoder is not supported for beam search yet."); mBeamWidths[batchIdx] = beamWidth; mNbSteps[batchIdx] = 0; mFinished[batchIdx] = false; mMaxNewTokens[batchIdx] = maxNewTokens; mGeneratedTokensPerStep[batchIdx] = generatedTokensPerStep; // copy the request ids into outputIds auto const requestIdsShape = requestIds->getShape(); auto inputIdsView = ITensor::view(requestIds, ITensor::makeShape({localBatchSize, requestIdsShape.d[0]})); auto outputIdsView = ITensor::view(outputIds, ITensor::makeShape({beamWidth, mMaxSequenceLength})); kernels::invokeFill(*outputIdsView, endId, *stream); kernels::tileTensor(*outputIdsView, *inputIdsView, beamWidth, *stream); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::newRequests(std::vector const& seqSlots, std::vector const& requests, std::vector const& samplingConfigs) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto batchSlotsPtr = bufferCast(*mBatchSlotsSetup); SizeType const localBatchSize = seqSlots.size(); for (SizeType bi = 0; bi < localBatchSize; ++bi) { newRequest(seqSlots[bi], requests[bi], samplingConfigs[bi]); if (mFusedDecoder) { batchSlotsPtr[bi] = seqSlots[bi]; } } if (mFusedDecoder) { TensorPtr batchSlotsView = std::move(ITensor::slice(mBatchSlotsSetup, 0, localBatchSize)); auto fusedSamplingConfig = SamplingConfig(samplingConfigs); mDecoders[0]->setup(fusedSamplingConfig, localBatchSize, mMaxSequenceLength, {batchSlotsView}); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } GptDecoderBatch::TokenPtr GptDecoderBatch::forwardAsync( decoder_batch::Output& output, decoder_batch::Input const& input) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto& allTargetLogits = input.logits; // TODO(nkorobov): check logits shape considering draft tokens auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape(); auto const maxBeamWidth = jointOutputIdsShape.d[1]; auto& srcCacheIndirection = input.cacheIndirection; auto& tgtCacheIndirection = output.cacheIndirection; TLLM_CHECK_WITH_INFO((srcCacheIndirection && tgtCacheIndirection) || (!srcCacheIndirection && !tgtCacheIndirection), "Specify both srcCacheIndirection and tgtCacheIndirection or neither."); TLLM_CHECK(!srcCacheIndirection || srcCacheIndirection->getDataType() == TRTDataType::value); TLLM_CHECK(!tgtCacheIndirection || tgtCacheIndirection->getDataType() == TRTDataType::value); TLLM_CHECK(static_cast(output.sequenceLengths->getSize()) == mActualBatchSize * maxBeamWidth); // TODO should remove this reshape and set shape to [batch_size, beam_width] outside TensorPtr sequenceLengths = ITensor::view(output.sequenceLengths, ITensor::makeShape({mActualBatchSize, maxBeamWidth})); auto batchSlotsDecoderPtr = bufferCast(*mBatchSlotsDecoder); auto batchSlotsAcceptTokensPtr = bufferCast(*mBatchSlotsAcceptTokens); auto batchSlotsAcceptLogitsPtr = bufferCast(*mBatchSlotsAcceptLogits); TLLM_CHECK(sequenceLengths); auto constexpr singleRequest = 1; CudaEvent eventStart{}; mStream->record(eventStart); auto const maxGeneratedTokensPerStep = *std::max_element(std::begin(mGeneratedTokensPerStep), std::end(mGeneratedTokensPerStep)); for (SizeType si = 0; si < maxGeneratedTokensPerStep; ++si) { SizeType localBatchDecoderIdx = 0; SizeType localBatchAcceptTokensIdx = 0; SizeType localBatchAcceptLogitsIdx = 0; for (SizeType bi = 0; bi < mActualBatchSize; ++bi) { if (mFinished[bi] || !input.active.at(bi) || si >= mGeneratedTokensPerStep[bi]) { continue; } if (mFusedDecoder) { if (!mAcceptByLogits[bi] && mGeneratedTokensPerStep[bi] > 1 && si == mGeneratedTokensPerStep[bi] - 1) { batchSlotsAcceptTokensPtr[si * mActualBatchSize + localBatchAcceptTokensIdx] = bi; localBatchAcceptTokensIdx++; } else if (mAcceptByLogits[bi] && mGeneratedTokensPerStep[bi] > 1 && si == 0) { batchSlotsAcceptLogitsPtr[si * mActualBatchSize + localBatchAcceptLogitsIdx] = bi; localBatchAcceptLogitsIdx++; } batchSlotsDecoderPtr[si * mActualBatchSize + localBatchDecoderIdx] = bi; localBatchDecoderIdx++; } } if (!mFusedDecoder) { for (SizeType bi = 0; bi < mActualBatchSize; ++bi) { if (mFinished[bi] || !input.active.at(bi) || si >= mGeneratedTokensPerStep[bi]) { continue; } auto& stream = mStreams[bi]; stream->wait(eventStart.get()); auto& targetLogits = allTargetLogits[bi]; auto& dInput = *mDecodingInputs[bi]; auto& dOutput = *mDecodingOutputs[bi]; auto& decoder = *mDecoders[bi]; TensorPtr finishedStepsInput = ITensor::slice(mFinishedSteps, si, 1); TensorPtr finishedStepsOutput = ITensor::slice(mFinishedSteps, std::min(si + 1, mGeneratedTokensPerStep[bi] - 1), 1); finishedStepsInput->squeeze(0); finishedStepsOutput->squeeze(0); if (srcCacheIndirection && tgtCacheIndirection) { auto srcView = std::shared_ptr(ITensor::slice(srcCacheIndirection, bi, singleRequest)); auto tgtView = std::shared_ptr(ITensor::slice(tgtCacheIndirection, bi, singleRequest)); dInput.cacheIndirection = ITensor::view( srcView, ITensor::makeShape({singleRequest, mBeamWidths[bi], srcView->getShape().d[2]})); dOutput.cacheIndirection = ITensor::view( tgtView, ITensor::makeShape({singleRequest, mBeamWidths[bi], tgtView->getShape().d[2]})); } auto sequenceLengthsView = std::shared_ptr(ITensor::slice(sequenceLengths, bi, singleRequest)); dOutput.lengths = ITensor::view(sequenceLengthsView, ITensor::makeShape({singleRequest, mBeamWidths[bi]})); { dInput.logits = ITensor::slice(targetLogits, si, singleRequest); dOutput.newTokens = ITensor::view(dOutput.newTokensVec[si]); dInput.finished = ITensor::slice(finishedStepsInput, bi, singleRequest); dOutput.finished = ITensor::slice(finishedStepsOutput, bi, singleRequest); decoder.forwardAsync(dOutput, dInput); mNbSteps[bi] += 1; mFinished[bi] = mNbSteps[bi] >= mMaxNewTokens[bi]; dInput.step += 1; } if (si == mGeneratedTokensPerStep[bi] - 1) { auto& stream = mStreams[bi]; CudaEvent event{}; stream->record(event); mStream->wait(event); } } } else { auto& dInput = *mJointDecodingInput; auto& dOutput = *mJointDecodingOutput; auto& decoder = *mDecoders[0]; auto& stream = mStreams[0]; stream->wait(eventStart.get()); BufferManager manager{stream}; std::vector logitsVec; auto targetLogitsPtrsSlice = ITensor::slice(mTargetLogitsPtrs, si, 1); auto targetLogitsPtrsSlicePtr = reinterpret_cast(bufferCast(*targetLogitsPtrsSlice)); SizeType targetLogitsIdx = 0; for (SizeType bi = 0; bi < mActualBatchSize; ++bi) { if (mFinished[bi] || !input.active.at(bi) || si >= mGeneratedTokensPerStep[bi]) { continue; } auto& targetLogits = allTargetLogits[bi]; SharedConstPtr logitsSlice = std::move(ITensor::slice(targetLogits, si, singleRequest)); logitsVec.push_back(logitsSlice); targetLogitsPtrsSlicePtr[targetLogitsIdx++] = logitsSlice->data(); } if (localBatchAcceptLogitsIdx > 0) { // These params are only used for testing. Thus, can be per batch instead of per request auto const& samplingConfig = decoder.getSamplingConfig(); const bool useRandomAcceptanceThreshold = !samplingConfig.draftAcceptanceThreshold.has_value(); const float randomAcceptanceThreshold = useRandomAcceptanceThreshold ? 0 : samplingConfig.draftAcceptanceThreshold.value()[0]; TensorPtr batchSlotsAcceptLogitsStepSlice = std::move(ITensor::slice(mBatchSlotsAcceptLogits, si, 1)); batchSlotsAcceptLogitsStepSlice->squeeze(0); TensorPtr batchSlotsAcceptLogitsSlice = std::move(ITensor::slice(batchSlotsAcceptLogitsStepSlice, 0, localBatchAcceptLogitsIdx)); IGptDecoder::acceptDraftTokensByLogits( /* [max_bs, max_tokens_per_step, vocabPadded] */ *mDraftLogits, /* [max_bs][max_tokens_per_step, vocabPadded] */ *targetLogitsPtrsSlice, /* [max_bs, max_tokens_per_step, vocabPadded] */ *mDraftProbs, /* [max_bs, max_tokens_per_step, vocabPadded] */ *mTargetProbs, /* [max_bs] */ *mNumDraftTokens, /* [max_tokens_per_step, max_bs] */ *mFinishedSteps, /* [bs] */ *batchSlotsAcceptLogitsSlice, static_cast(mVocabSize), static_cast(mVocabSizePadded), useRandomAcceptanceThreshold, randomAcceptanceThreshold, reinterpret_cast(bufferCast(*mCurandStates)), stream); } TensorPtr finishedStepsInput = ITensor::slice(mFinishedSteps, si, 1); TensorPtr finishedStepsOutput = ITensor::slice(mFinishedSteps, std::min(maxGeneratedTokensPerStep - 1, si + 1), 1); finishedStepsInput->squeeze(0); finishedStepsOutput->squeeze(0); TensorPtr newTokensStepView = std::move(ITensor::slice(dOutput.newTokensSteps, si, 1)); newTokensStepView->squeeze(0); dInput.logitsVec = logitsVec; dInput.finished = finishedStepsInput; TensorPtr batchSlotsDecoderSlice = std::move(ITensor::slice(mBatchSlotsDecoder, si, 1)); batchSlotsDecoderSlice->squeeze(0); dInput.batchSlots = batchSlotsDecoderSlice; dInput.maxBatchSize = localBatchDecoderIdx; dOutput.newTokens = newTokensStepView; dOutput.finished = finishedStepsOutput; dOutput.lengths = sequenceLengths; if (localBatchDecoderIdx > 0) { decoder.forwardAsync(dOutput, dInput); } for (SizeType bi = 0; bi < mActualBatchSize; ++bi) { if (mFinished[bi] || !input.active.at(bi) || si >= mGeneratedTokensPerStep[bi]) { continue; } mNbSteps[bi] += 1; mFinished[bi] = mNbSteps[bi] >= mMaxNewTokens[bi]; } if (localBatchAcceptTokensIdx > 0) { TensorPtr batchSlotsAcceptTokensStepSlice = std::move(ITensor::slice(mBatchSlotsAcceptTokens, si, 1)); batchSlotsAcceptTokensStepSlice->squeeze(0); auto batchSlotsAcceptTokensSlice = ITensor::slice(batchSlotsAcceptTokensStepSlice, 0, localBatchAcceptTokensIdx); // Update finished state for 0th step auto finishedFinal = ITensor::slice(mFinishedSteps, si, 1); IGptDecoder::acceptDraftTokensByIds( /* [max_bs, max_seq_len] */ *dOutput.ids, /* [max_bs, max_draft_tokens] */ *mDraftTokenIds, /* [max_bs] */ *dInput.lengths, /* [max_bs] */ *mNumDraftTokens, /* [max_bs] */ *dOutput.lengths, /* [max_tokens_per_step, max_bs] */ *mFinishedSteps, /* [max_bs] */ *finishedFinal, /* [max_bs] */ *dOutput.finishedSum, /* [bs] */ *batchSlotsAcceptTokensSlice, stream); } if (si == maxGeneratedTokensPerStep - 1) { CudaEvent event{}; stream->record(event); mStream->wait(event); } } } CudaEvent eventStop{}; mStream->record(eventStop); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); return std::make_unique(std::move(eventStop), input.active); } void GptDecoderBatch::forwardSync(decoder_batch::Token const& token) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); token.event.synchronize(); for (std::int32_t i = 0; i < mActualBatchSize; ++i) { if (token.active[i] && !mFinished[i]) { auto& dOutput = *mDecodingOutputs[i]; mFinished[i] = mFinished[i] // This condition requires the synchronization above || bufferCast(*dOutput.finishedSum)[0] == static_cast(mBeamWidths[i]); } } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } // TODO call this at the end of forward if mFinished[i] changes from false to true? CudaEvent GptDecoderBatch::postProcessRequest(SizeType batchIdx) const { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto& stream = mStreams[batchIdx]; auto manager = BufferManager{stream}; auto& decoder = *mDecoders[batchIdx]; auto& dInput = *mDecodingInputs[batchIdx]; auto& dOutput = *mDecodingOutputs[batchIdx]; // TODO can we do this inplace? auto& outputIds = dOutput.ids; auto finalOutputIds = manager.gpu(outputIds->getShape(), outputIds->getDataType()); decoder.gatherTree(*finalOutputIds, dOutput, dInput, manager); manager.copy(*finalOutputIds, *outputIds); CudaEvent event{}; stream->record(event); mStream->wait(event); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); return event; } void GptDecoderBatch::newBatch( GenerationInput const& inputs, GenerationOutput const& outputs, SamplingConfig const& samplingConfig) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); // split batch into single requests auto const& inputLengths = inputs.lengths; mActualBatchSize = inputLengths->getShape().d[0]; mGeneratedTokensPerStep.resize(mActualBatchSize); auto const& jointOutputIdsShape = mJointDecodingOutput->ids->getShape(); auto const maxBatchSize = jointOutputIdsShape.d[0]; TLLM_CHECK(mActualBatchSize <= maxBatchSize); auto const maxBeamWidth = jointOutputIdsShape.d[1]; TLLM_CHECK(samplingConfig.beamWidth <= maxBeamWidth); auto const inputIdsShape = inputs.ids->getShape(); TensorPtr inputIdsFlatView = ITensor::view(inputs.ids); if (inputs.packed && inputIdsShape.nbDims == 2) { // For users still pass inputs.ids with shape [1, num_tokens], do squeeze for them. inputIdsFlatView->squeeze(0); } auto inputLengthsHost = mBufferManager.copyFrom(*inputLengths, MemoryType::kCPU); auto inputLengthsPtr = bufferCast(*inputLengthsHost); auto inputOffset = 0; for (auto batchIdx = 0; batchIdx < mActualBatchSize; ++batchIdx) { mGeneratedTokensPerStep[batchIdx] = 1; auto const inputLength = inputLengthsPtr[batchIdx]; auto const inputShape = ITensor::makeShape({inputLength}); TensorPtr inputView; if (inputs.packed) { TLLM_CHECK(inputIdsFlatView->getShape().nbDims == 1); inputView = ITensor::slice(inputIdsFlatView, inputOffset, inputLength); inputOffset += inputLength; } else { inputView = ITensor::slice(inputs.ids, batchIdx, 1); inputView->reshape(inputShape); } auto request = decoder_batch::Request{inputView, inputLength, inputs.maxNewTokens, inputs.endId}; request.computeCumLogProbs = (outputs.cumLogProbs != nullptr); request.computeLogProbs = (outputs.logProbs != nullptr); if (inputs.embeddingBias) { TLLM_THROW("newBatch doesn't support embeddingBias yet."); } if (inputs.badWordsList) { auto const& shape = inputs.badWordsList->getShape(); if (shape.nbDims == 2) { request.badWordsList = inputs.badWordsList; } else { assert(shape.nbDims == 3); TensorPtr badWordsListView = ITensor::slice(inputs.badWordsList, batchIdx, 1); badWordsListView->squeeze(0); request.badWordsList = badWordsListView; } } if (inputs.stopWordsList) { TensorPtr stopWordsListView = ITensor::slice(inputs.stopWordsList, batchIdx, 1); stopWordsListView->squeeze(0); request.stopWordsList = stopWordsListView; } newRequest(batchIdx, request, extractSamplingConfig(samplingConfig, batchIdx)); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::forwardAsync(decoder::Output& output, decoder::Input const& input) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto const& logitsShape = input.logits->getShape(); auto const batchSize = logitsShape.d[0]; auto constexpr singleRequest = 1; std::vector logits; logits.reserve(batchSize); for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx) { auto logitsSlice = std::shared_ptr(ITensor::slice(input.logits, batchIdx, singleRequest)); logits.emplace_back( ITensor::view(logitsSlice, ITensor::makeShape({singleRequest, mBeamWidths[batchIdx], logitsShape.d[2]}))); } decoder_batch::Input batchInput{logits}; batchInput.cacheIndirection = input.cacheIndirection; decoder_batch::Output batchOutput; batchOutput.cacheIndirection = output.cacheIndirection; batchOutput.sequenceLengths = output.sequenceLengths; mForwardToken = forwardAsync(batchOutput, batchInput); mBufferManager.setZero(*mFinishedSum); kernels::reduce(*mFinishedSum, *ITensor::slice(mJointDecodingOutput->finishedSum, 0, mActualBatchSize), *mStream); mStream->record(mForwardEvent); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::forwardSync() { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); forwardSync(*mForwardToken); // wait for mFinishedSum to be updated mForwardEvent.synchronize(); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } void GptDecoderBatch::finalize() const { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); for (SizeType batchIdx = 0; batchIdx < mActualBatchSize; ++batchIdx) { auto event = postProcessRequest(batchIdx); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } CudaEvent GptDecoderBatch::finalize(SizeType batchIdx) const { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto event = postProcessRequest(batchIdx); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); return event; }