# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import List import torch class Block(object): def __init__(self, block_idx, k_ptrs, v_ptrs): self.idx = block_idx self.k_ptrs = k_ptrs self.v_ptrs = v_ptrs self.ref_count = 0 def add_link(self): self.ref_count += 1 def remove_link(self): self.ref_count -= 1 def has_link(self) -> bool: return self.ref_count > 0 def is_shared(self) -> bool: return self.ref_count > 1 def get_k_ptr(self, idx) -> int: return self.k_ptrs[idx] def get_v_ptr(self, idx) -> int: return self.v_ptrs[idx] class GenerationSequence(object): def __init__(self, seq_idx, batch_idx): self.seq_idx = seq_idx self.batch_idx = batch_idx def get_batch_idx(self) -> int: """ Returns idx of sequence in batch """ return self.batch_idx def get_seq_idx(self) -> int: """ Returns sequence idx """ return self.seq_idx def __eq__(self, another): return hasattr(another, 'seq_idx') and self.seq_idx == another.seq_idx and \ hasattr(another, 'batch_idx') and self.batch_idx == another.batch_idx def __hash__(self): return self.seq_idx class BlocksManager(object): _sizeof = { torch.float32: 4, torch.float16: 2, torch.bfloat16: 2, torch.int8: 1 } def __init__(self, memory_pools: List[torch.Tensor], blocks: int, max_blocks_per_seq: int = 128, beam_width: int = 1): self.max_blocks_per_seq = max_blocks_per_seq self.pointer_array = None self.memory_pools = memory_pools self.blocks = blocks self.beam_width = beam_width self.elts_per_blocks = [] for pool in memory_pools: # Pool consists of memory for K and V caches self.elts_per_blocks.append(pool.nelement() // (2 * blocks)) self.free_blocks = [] for bi in range(blocks): k_ptrs = [] v_ptrs = [] for pool, elts_per_block in zip(memory_pools, self.elts_per_blocks): k_ptrs.append(self.get_mempool_pointer(bi, pool, elts_per_block)) v_ptrs.append( self.get_mempool_pointer(bi, pool, elts_per_block) + self.blocks * elts_per_block * self._sizeof[pool.dtype]) self.free_blocks.append(Block(bi, k_ptrs, v_ptrs)) beam_width = self.beam_width # Here use beam_width instead of self.beam_width to remove cyclic reference between self and # self.allocated_blocks by preventing capture self, which may cause memory leak. self.allocated_blocks = defaultdict( lambda: [[] for _ in range(beam_width)]) def has_free_block(self) -> bool: """ Returns True if we have at least 1 free block """ return len(self.free_blocks) > 0 def allocate(self, owner: GenerationSequence, share_across_beam: bool = False): """ Add block to owner and increase ref count """ # Add blocks for whole beam width block = None for bi in range(self.beam_width): if not self.has_free_block(): raise RuntimeError("Can't allocate new block for KV cache") # Use the same block for all seqs in beam if share_across_beam if block is None or share_across_beam == False: block = self.free_blocks.pop(0) # Add one reference to the block block.add_link() self.allocated_blocks[owner][bi].append(block) def replace_shared_block(self, owner: GenerationSequence, block_idx: int): """ Replace the shared block. Free the shared block, and allocate blocks with share_across_beam=False """ if not self.allocated_blocks[owner][0][block_idx].is_shared(): return # Free shared block for bi in range(self.beam_width): block = self.allocated_blocks[owner][bi][block_idx] block.remove_link() if not block.has_link(): self.free_blocks.append(block) # Allocate new block for bi in range(self.beam_width): if not self.has_free_block(): raise RuntimeError("Can't allocate new block for KV cache") block = self.free_blocks.pop(0) block.add_link() self.allocated_blocks[owner][bi][block_idx] = block return def free(self, owner: GenerationSequence): """ Unlink all blocks of given owner. Moves blocks with ref_count == 0 to free. Removes owner from allocated blocks. """ for bi in range(self.beam_width): for block in self.allocated_blocks[owner][bi]: # Move block to free if no one refers to it block.remove_link() # Move block to free if no one refers to it if not block.has_link(): self.free_blocks.append(block) # Remove owner from allocated blocks self.allocated_blocks.pop(owner) def get_number_blocks(self, owner: GenerationSequence) -> int: """ Returns number of blocks allocated to the sequence owner """ return len(self.allocated_blocks[owner][0]) def get_mempool_pointer(self, block_idx: int, pool: torch.Tensor, elts_per_block: int) -> int: """ Computes linear pointer """ return pool.data_ptr( ) + block_idx * elts_per_block * self._sizeof[pool.dtype] def get_pointer_array(self, pool_idx: int, beam_width: int) -> torch.Tensor: """ Returns array of [batch size, beam_width, 2, max_blocks_per_seq] of pointers to the allocated blocks in memory pool """ assert (beam_width <= self.beam_width) def create_nested_list(dims): """Recursive function to generate nested list.""" if len(dims) == 1: return [0 for _ in range(dims[0])] return [create_nested_list(dims[1:]) for _ in range(dims[0])] pointer_array = create_nested_list( (len(self.allocated_blocks), beam_width, 2, self.max_blocks_per_seq)) for owner, beams_blocks in self.allocated_blocks.items(): for bi in range(beam_width): for block_linear_idx, block in enumerate(beams_blocks[bi]): # K cache pointers pointer_array[owner.get_batch_idx( )][bi][0][block_linear_idx] = block.get_k_ptr(pool_idx) # V cache pointers pointer_array[owner.get_batch_idx( )][bi][1][block_linear_idx] = block.get_v_ptr(pool_idx) self.pointer_array = torch.tensor(pointer_array, dtype=torch.int64) return self.pointer_array def get_continuous_caches(self, pool_idx: int) -> torch.Tensor: """ Returns continuous KV caches. Used only for debug purposes. """ assert self.beam_width == 1 elts_per_block = self.elts_per_blocks[pool_idx] pool = self.memory_pools[pool_idx].flatten() continuous_kv_cache = torch.zeros(len(self.allocated_blocks), 2, self.max_blocks_per_seq * elts_per_block, dtype=pool.dtype, device="cuda") for owner, beam_blocks in self.allocated_blocks.items(): for bi in range(self.beam_width): for block_linear_idx, block in enumerate(beam_blocks[bi]): # The batch index. batch_idx = owner.get_batch_idx() # The first index in the sequence. block_offset = block_linear_idx * elts_per_block # The first index in the pool for K. k_start = block.idx * elts_per_block # The first index in the pool for V. v_start = k_start + self.blocks * elts_per_block continuous_kv_cache[batch_idx][0][ block_offset:block_offset + elts_per_block] = pool[k_start:k_start + elts_per_block] continuous_kv_cache[batch_idx][1][ block_offset:block_offset + elts_per_block] = pool[v_start:v_start + elts_per_block] return continuous_kv_cache class KVCacheManager(object): def __init__(self, memory_pools: List[torch.Tensor], blocks: int, tokens_per_block: int, max_blocks_per_seq: int, max_attention_window_size: int, sink_token_len: int, beam_width: int = 1, use_one_more_block: bool = False): self.blocks_manager = BlocksManager( memory_pools=memory_pools, blocks=blocks, max_blocks_per_seq=max_blocks_per_seq, beam_width=beam_width) self.num_pools = len(memory_pools) self.tokens_per_block = tokens_per_block self.max_attention_window_size = max_attention_window_size self.sink_token_len = sink_token_len self.beam_width = beam_width # The sink tokens are not stored into the same block with other tokens. # Need to add the bubble after the sink tokens. if sink_token_len % tokens_per_block == 0: self.bubble_len = 0 else: self.bubble_len = tokens_per_block - sink_token_len % tokens_per_block # Token num in the sink blocks self.sink_block_token_num = self.sink_token_len + self.bubble_len # Max token num in the cache self.max_token_num = self.max_attention_window_size + self.bubble_len if use_one_more_block: self.max_token_num += self.tokens_per_block self.lens = [] self.sequences = [] def step(self, finished: List[bool]): """ Iterate to the next generation step. Add new blocks where needed and clear finished sequences. """ for seq in self.sequences: batch_idx = seq.get_batch_idx() # Enable cyclic kv cache when it exceeds the max_token_num cyclic_token_num = self.max_token_num - self.sink_block_token_num next_token_idx_in_cache = self.sink_block_token_num + \ (self.lens[batch_idx] - self.sink_block_token_num) % cyclic_token_num if not finished[batch_idx] and ( next_token_idx_in_cache % self.tokens_per_block == 0 or (next_token_idx_in_cache - self.sink_block_token_num) % cyclic_token_num == 0): if self.lens[batch_idx] < self.max_token_num: self.blocks_manager.allocate(seq) elif self.beam_width > 1: # Get next block index next_block_idx = next_token_idx_in_cache // self.tokens_per_block # Replace the shared block with the unshared ones self.blocks_manager.replace_shared_block( seq, next_block_idx) self.lens[batch_idx] += 1 # Remove finished sequences for fi in range(len(finished)): if finished[fi]: self.blocks_manager.free(self.sequences[fi]) self.lens = [l for l, f in zip(self.lens, finished) if not f] # Remap sequence ids new_sequences = [] batch_idx = 0 for seq, finish in zip(self.sequences, finished): if not finish: seq.batch_idx = batch_idx new_sequences.append(seq) batch_idx += 1 self.sequences = new_sequences def add_sequence(self, sequence: GenerationSequence, context_len: int): """ Add sequence to the manager and allocate minimum amount of blocks for context """ seq_len = context_len + self.bubble_len self.lens.append(seq_len) self.sequences.append(sequence) # Get the final token index in kv cache final_token_kv_index = self.sink_block_token_num + ( (seq_len - 1 - self.sink_block_token_num) % (self.max_token_num - self.sink_block_token_num)) # Get block index that with shareAmongBeams=False. unshared_block_idx = -1 if final_token_kv_index % self.tokens_per_block > 0: unshared_block_idx = final_token_kv_index // self.tokens_per_block # Get context block num. # Allocate one more block if there are tokens that can't be shared across beams. seq_len = min(seq_len, self.max_token_num) context_blocks = seq_len // self.tokens_per_block if seq_len % self.tokens_per_block > 0: context_blocks += 1 # Allocate blocks for i in range(context_blocks): self.blocks_manager.allocate( sequence, share_across_beam=i != unshared_block_idx) def get_block_pointers(self, beam_width: int) -> torch.Tensor: """ Returns arrays of pointers for all memory pools """ pointer_arrays = [] for pool in range(self.num_pools): pointer_arrays.append( self.blocks_manager.get_pointer_array( pool, beam_width).view(dtype=torch.int64)) return torch.stack(pointer_arrays, dim=0) class KVCacheUpdater: def __init__(self): self.use_paged_kv_cache = None self.num_kv_heads = None self.head_dim = None self.elt_size = None self.past_key_value_list = None self.max_kv_cache_length = None self.kv_cache_manager = None def init_linear_kv_cache(self, num_kv_heads, head_dim, kv_cache_type, past_key_value_list): self.use_paged_kv_cache = False self.num_kv_heads = num_kv_heads self.head_dim = head_dim self.past_key_value_list = past_key_value_list self.elt_size = torch.zeros(1, dtype=kv_cache_type).element_size() self.max_kv_cache_length = past_key_value_list[0].shape[3] def init_paged_kv_cache(self, num_kv_heads, head_dim, kv_cache_type, kv_cache_manager): self.use_paged_kv_cache = True self.num_kv_heads = num_kv_heads self.head_dim = head_dim self.kv_cache_manager = kv_cache_manager self.elt_size = torch.zeros(1, dtype=kv_cache_type).element_size() def update(self, accepted_draft_token_offsets, packed_accepted_draft_tokens_indices, sequence_length_buffer, rewind_tokens): assert isinstance(rewind_tokens, torch.Tensor) or isinstance( rewind_tokens, int) rewind_tokens_tensor = rewind_tokens if isinstance( rewind_tokens, torch.Tensor) else None rewind_tokens_count = rewind_tokens if isinstance(rewind_tokens, int) else 0 assert self.use_paged_kv_cache is not None if self.use_paged_kv_cache: host_kv_cache_block_pointers = self.kv_cache_manager.get_block_pointers( 1) kv_cache_block_pointers = host_kv_cache_block_pointers.to('cuda') torch.ops.tensorrt_llm.update_kv_cache_draft_token_location( accepted_draft_token_offsets, packed_accepted_draft_tokens_indices, sequence_length_buffer, True, self.num_kv_heads, self.head_dim * self.elt_size, rewind_tokens_count, self.kv_cache_manager.max_attention_window_size, rewind_tokens_tensor, None, kv_cache_block_pointers, self.kv_cache_manager.blocks_manager.max_blocks_per_seq, self.kv_cache_manager.tokens_per_block, None, ) else: torch.ops.tensorrt_llm.update_kv_cache_draft_token_location( accepted_draft_token_offsets, packed_accepted_draft_tokens_indices, sequence_length_buffer, False, self.num_kv_heads, self.head_dim * self.elt_size, rewind_tokens_count, self.max_kv_cache_length, rewind_tokens_tensor, self.past_key_value_list, None, None, None, None, )