# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import torch import transformers from ..._utils import torch_dtype_to_str from ...mapping import Mapping from ..modeling_utils import PretrainedConfig, QuantConfig class BERTConfig(PretrainedConfig): def __init__(self, *, is_roberta: bool = False, type_vocab_size, pad_token_id=None, num_labels=None, **kwargs): self.is_roberta = is_roberta self.type_vocab_size = type_vocab_size self.pad_token_id = pad_token_id self.num_labels = num_labels super().__init__(**kwargs) def to_dict(self): output = super().to_dict() output['is_roberta'] = self.is_roberta output['type_vocab_size'] = self.type_vocab_size output['pad_token_id'] = self.pad_token_id output['num_labels'] = self.num_labels return output @classmethod def from_hugging_face( cls, hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'], dtype: str = 'auto', mapping: Optional[Mapping] = None, quant_config: Optional[QuantConfig] = None, **kwargs): import transformers if isinstance(hf_config_or_dir, transformers.PretrainedConfig): hf_config = hf_config_or_dir else: hf_config_dir = str(hf_config_or_dir) hf_config = transformers.AutoConfig.from_pretrained(hf_config_dir) num_key_value_heads = getattr(hf_config, "num_key_value_heads", hf_config.num_attention_heads) head_dim = getattr( hf_config, "head_dim", hf_config.hidden_size // hf_config.num_attention_heads) head_size = getattr(hf_config, "kv_channels", head_dim) num_labels = getattr(hf_config, "num_labels", None) if (hf_config.position_embedding_type == 'absolute'): position_embedding_type = 'learned_absolute' else: raise NotImplementedError( f"{hf_config.position_embedding_type} hasn't been supported") if hf_config.model_type == "bert": is_roberta = False else: is_roberta = True if dtype == 'auto': dtype = getattr(hf_config, 'torch_dtype', None) if dtype is None: dtype = 'float16' if isinstance(dtype, torch.dtype): dtype = torch_dtype_to_str(dtype) if dtype == 'float32': dtype = 'float16' return cls( architecture=hf_config.architectures[0], dtype=dtype, hidden_size=hf_config.hidden_size, num_hidden_layers=hf_config.num_hidden_layers, num_attention_heads=hf_config.num_attention_heads, vocab_size=hf_config.vocab_size, hidden_act=hf_config.hidden_act, logits_dtype='float32', norm_epsilon=hf_config.layer_norm_eps, position_embedding_type=position_embedding_type, max_position_embeddings=hf_config.max_position_embeddings, num_key_value_heads=num_key_value_heads, intermediate_size=hf_config.intermediate_size, head_size=head_size, quantization=quant_config, mapping=mapping, #BERT model args is_roberta=is_roberta, type_vocab_size=hf_config.type_vocab_size, pad_token_id=hf_config.pad_token_id, num_labels=num_labels, **kwargs)