# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..._utils import pad_vocab_size from ...functional import Tensor from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear, Embedding, LayerNorm) from ...module import Module from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM, PretrainedConfig) class OPTDecoderLayer(Module): def __init__(self, config: PretrainedConfig, layer_idx: int): super().__init__() self.layer_idx = layer_idx self.config = config self.do_layer_norm_before = self.config.do_layer_norm_before hidden_size = config.hidden_size dtype = config.dtype tp_group = config.mapping.tp_group tp_size = config.mapping.tp_size self.input_layernorm = LayerNorm(normalized_shape=hidden_size, dtype=dtype) layers_range = config.mapping.pp_layers(config.num_hidden_layers) local_layer_idx = layer_idx - layers_range[0] self.attention = Attention( local_layer_idx=local_layer_idx, hidden_size=hidden_size, num_attention_heads=config.num_attention_heads, max_position_embeddings=config.max_position_embeddings, attention_mask_type=AttentionMaskType.causal, dtype=dtype, tp_group=tp_group, tp_size=tp_size, quant_mode=config.quant_mode) mlp_hidden_size = hidden_size * 4 if config.intermediate_size is None else config.intermediate_size self.mlp = MLP(hidden_size=hidden_size, ffn_hidden_size=mlp_hidden_size, hidden_act=config.hidden_act, dtype=dtype, tp_group=tp_group, tp_size=tp_size, quant_mode=config.quant_mode) self.post_layernorm = LayerNorm(normalized_shape=hidden_size, dtype=dtype) def forward(self, hidden_states: Tensor, attention_mask=None, use_cache=False, kv_cache_params=None, attention_params=None): residual = hidden_states attention_input = hidden_states if self.do_layer_norm_before: attention_input = self.input_layernorm(hidden_states) # At this point the hidden_states object must be a Tensor. assert isinstance(attention_input, Tensor) attention_output = self.attention(attention_input, attention_mask=attention_mask, use_cache=use_cache, kv_cache_params=kv_cache_params, attention_params=attention_params) if use_cache: attention_output, presents = attention_output hidden_states = residual + attention_output if not self.do_layer_norm_before: hidden_states = self.input_layernorm(hidden_states) residual = hidden_states if self.do_layer_norm_before: hidden_states = self.post_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states if not self.do_layer_norm_before: hidden_states = self.post_layernorm(hidden_states) if use_cache: return (hidden_states, presents) return hidden_states class OPTModel(Module): def __init__(self, config: PretrainedConfig): super().__init__() self.do_layer_norm_before = config.do_layer_norm_before self.vocab_embedding = Embedding(config.vocab_size, config.hidden_size, dtype=config.dtype) self.position_embedding = Embedding(config.max_position_embeddings, config.hidden_size, dtype=config.dtype) self.layers = DecoderLayerList(OPTDecoderLayer, config) if self.do_layer_norm_before: self.ln_f = LayerNorm(normalized_shape=config.hidden_size, dtype=config.dtype) def forward(self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, prompt_embedding_table=None, prompt_tasks=None, prompt_vocab_size=None, **kwargs): args = [prompt_embedding_table, prompt_tasks, prompt_vocab_size ] if prompt_embedding_table is not None else [] hidden_states = self.vocab_embedding(input_ids, *args) hidden_states = hidden_states + self.position_embedding(position_ids) hidden_states = self.layers(hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params) if use_cache: hidden_states, presents = hidden_states if self.do_layer_norm_before: hidden_states = self.ln_f(hidden_states) if use_cache: return (hidden_states, tuple(presents)) return hidden_states class OPTForCausalLM(DecoderModelForCausalLM): def __init__(self, config: PretrainedConfig): self.check_config(config) transformer = OPTModel(config) vocab_size_padded = pad_vocab_size(config.vocab_size, config.mapping.tp_size) lm_head = ColumnLinear(config.hidden_size, vocab_size_padded, bias=False, dtype=config.dtype, tp_group=config.mapping.tp_group, tp_size=config.mapping.tp_size, gather_output=True) super().__init__(config, transformer, lm_head) def check_config(self, config): config.set_if_not_exist('do_layer_norm_before', False)