# SPDX-FileCopyrightText: Copyright (c) 2022-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Sequence from ...mapping import Mapping from ..modeling_utils import PretrainedConfig, QuantConfig class STDiTModelConfig(PretrainedConfig): def __init__(self, architecture: str = 'STDiT3', checkpoint_path: str = 'pretrained_ckpt/model.safetensors', vae_type: str = "hpcai-tech/OpenSora-VAE-v1.2", text_encoder_type: str = "DeepFloyd/t5-v1_1-xxl", caption_channels: int = 4096, num_hidden_layers: int = 28, hidden_size: int = 1152, width: int = 640, height: int = 360, num_frames: int = 102, latent_size: Sequence[int] = [30, 45, 80], stdit_patch_size: Sequence[int] = [1, 2, 2], spatial_patch_size: Sequence[int] = [1, 8, 8], temporal_patch_size: Sequence[int] = [4, 1, 1], in_channels: int = 4, input_sq_size: int = 512, num_attention_heads: int = 16, mlp_ratio: float = 4.0, class_dropout_prob: float = 0.1, model_max_length: int = 300, learn_sigma: bool = True, qk_norm: bool = True, skip_y_embedder: bool = False, dtype: Optional[str] = None, mapping: Mapping = Mapping(), quant_config: Optional[QuantConfig] = None, **kwargs): kwargs.update({ 'architecture': architecture, 'num_hidden_layers': num_hidden_layers, 'num_attention_heads': num_attention_heads, 'hidden_size': hidden_size, 'dtype': dtype }) super().__init__(**kwargs) self.checkpoint_path = checkpoint_path self.vae_type = vae_type self.text_encoder_type = text_encoder_type self.caption_channels = caption_channels self.width = width self.height = height self.num_frames = num_frames self.latent_size = latent_size self.stdit_patch_size = stdit_patch_size self.spatial_patch_size = spatial_patch_size self.temporal_patch_size = temporal_patch_size self.in_channels = in_channels self.input_sq_size = input_sq_size self.mlp_ratio = mlp_ratio self.class_dropout_prob = class_dropout_prob self.model_max_length = model_max_length self.learn_sigma = learn_sigma self.qk_norm = qk_norm self.skip_y_embedder = skip_y_embedder self.mapping = mapping self.quant_config = quant_config @classmethod def from_input_config(cls, input_config: Dict[str, Any], dtype: str = 'auto', mapping: Mapping = Mapping(), quant_config: Optional[QuantConfig] = None, **kwargs): return cls(architecture=input_config['architecture'], checkpoint_path=input_config['checkpoint_path'], vae_type=input_config['vae_type'], text_encoder_type=input_config['text_encoder_type'], caption_channels=input_config['caption_channels'], num_hidden_layers=input_config['num_hidden_layers'], width=input_config['width'], height=input_config['height'], num_frames=input_config['num_frames'], latent_size=input_config['latent_size'], hidden_size=input_config['hidden_size'], stdit_patch_size=input_config['stdit_patch_size'], spatial_patch_size=input_config['spatial_patch_size'], temporal_patch_size=input_config['temporal_patch_size'], in_channels=input_config['in_channels'], input_sq_size=input_config['input_sq_size'], num_attention_heads=input_config['num_attention_heads'], mlp_ratio=input_config['mlp_ratio'], class_dropout_prob=input_config['class_dropout_prob'], model_max_length=input_config['model_max_length'], learn_sigma=input_config['learn_sigma'], qk_norm=input_config['qk_norm'], skip_y_embedder=input_config['skip_y_embedder'], dtype=dtype, mapping=mapping, quant_config=quant_config, **kwargs)