Source code for tensorrt_llm.layers.attention

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional

import numpy as np
import tensorrt as trt

from .._common import default_net, precision
from .._utils import (fp32_array, int32_array, is_same_dtype,
                      numpy_fp32_to_bf16, preview_trt_version, trt_dtype_to_np,
                      trt_dtype_to_str)
from ..functional import (AttentionMaskType, PositionEmbeddingType,
                          RotaryScalingType, Tensor, arange, bert_attention,
                          cast, clip, concat, conditional, constant, embedding,
                          expand, expand_dims, expand_mask,
                          generate_alibi_biases, generate_alibi_slopes,
                          gpt_attention, matmul, minimum, repeat_interleave,
                          shape, slice, softmax, split, unsqueeze, view, where)
from ..module import Module
from ..parameter import Parameter
from ..quantization import QuantMode
from ..quantization.functional import dequantize, quantize
from ..quantization.layers import FP8Linear, FP8RowLinear
from .linear import ColumnLinear, QKVColumnLinear, RowLinear
from .lora import LoraRuntimeParams


[docs] class RopeEmbeddingUtils:
[docs] @staticmethod def create_sinusoidal_positions(num_pos: int, dim: int, theta: float = 10000.0, dtype=np.float32): inv_freq = 1.0 / (theta**(np.arange(0, dim, 2) / dim)).astype(dtype) sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos, dtype=dtype), inv_freq, dtype=dtype) concat = np.concatenate((np.sin(sinusoid_inp), np.cos(sinusoid_inp)), axis=1) return np.expand_dims(concat, axis=0).astype(dtype)
[docs] @staticmethod def rotate_every_two(tensor: Tensor) -> Tensor: assert tensor.ndim() == 4 shape_tensor = concat([ shape(tensor, i) / 2 if i == (tensor.ndim() - 1) else shape(tensor, i) for i in range(tensor.ndim()) ]) x1 = slice(tensor, [0, 0, 0, 0], shape_tensor, [1, 1, 1, 2]) x2 = slice(tensor, [0, 0, 0, 1], shape_tensor, [1, 1, 1, 2]) x1 = expand_dims(x1, 4) x2 = expand_dims(x2, 4) zero = constant( np.ascontiguousarray( np.zeros([1], dtype=trt_dtype_to_np(tensor.dtype)))) x2 = zero - x2 x = concat([x2, x1], 4) return view( x, concat([shape(x, 0), shape(x, 1), shape(x, 2), shape(x, 3) * 2]))
[docs] @staticmethod def rotate_half(tensor: Tensor) -> Tensor: # [bs, num_attention_kv_heads, seqlen, attention_head_size] assert tensor.ndim() == 4 shape_tensor = concat([ shape(tensor, i) / 2 if i == (tensor.ndim() - 1) else shape(tensor, i) for i in range(tensor.ndim()) ]) last_dim = shape(tensor, tensor.ndim() - 1) / 2 x1 = slice(tensor, [0, 0, 0, 0], shape_tensor, [1, 1, 1, 1]) x2 = slice(tensor, concat([0, 0, 0, last_dim]), shape_tensor, [1, 1, 1, 1]) zero = constant( np.ascontiguousarray( np.zeros([1], dtype=trt_dtype_to_np(tensor.dtype)))) x2 = zero - x2 x = concat([x2, x1], 3) return x
[docs] @staticmethod def apply_rotary_pos_emb( tensor: Tensor, position_embedding: List[Tensor] = None, pos_emb_type: PositionEmbeddingType = PositionEmbeddingType.rope_gptj ) -> Tensor: rotate_func = None if pos_emb_type == PositionEmbeddingType.rope_gpt_neox: assert len(position_embedding) == 2 cos, sin = position_embedding sin = expand_dims(sin, 2) cos = expand_dims(cos, 2) sin = concat([sin, sin], 3) cos = concat([cos, cos], 3) rotate_func = RopeEmbeddingUtils.rotate_half elif pos_emb_type == PositionEmbeddingType.rope_gptj: assert len(position_embedding) == 2 cos, sin = position_embedding sin = expand_dims(sin, 2) cos = expand_dims(cos, 2) sin = repeat_interleave(sin, 2, 3) cos = repeat_interleave(cos, 2, 3) rotate_func = RopeEmbeddingUtils.rotate_every_two elif pos_emb_type == PositionEmbeddingType.chatglm: assert len(position_embedding) == 4 cos0, cos1, sin0, sin1 = position_embedding shape_tensor = concat([ shape(tensor, i) / 2 if i == (tensor.ndim() - 1) else shape(tensor, i) for i in range(tensor.ndim()) ]) last_dim = shape(tensor, tensor.ndim() - 1) / 2 x_part0 = slice(tensor, [0, 0, 0, 0], shape_tensor, [1, 1, 1, 1]) x_part1 = slice(tensor, concat([0, 0, 0, last_dim]), shape_tensor, [1, 1, 1, 1]) y_part0 = (x_part0 * cos0) + (RopeEmbeddingUtils.rotate_half(x_part0) * sin0) y_part1 = (x_part1 * cos1) + (RopeEmbeddingUtils.rotate_half(x_part1) * sin1) result = concat([y_part0, y_part1], dim=3) return result.view(shape(tensor)) else: raise ValueError('The PositionEmbeddingType is not RoPE') return (tensor * cos) + (rotate_func(tensor) * sin)
[docs] @staticmethod def apply_rotary_pos_emb_chatglm(qkv, position_embedding, num_attention_heads, attention_head_size, max_position_embeddings, rotary_embedding_scale, remove_input_padding) -> Tensor: half_head_size = attention_head_size // 2 input = qkv[0] if isinstance(qkv, list) else qkv input_shape = shape(input) batch_size = 1 if remove_input_padding else shape(input, 0) seqlen = shape(input, 0 if remove_input_padding else 1) if isinstance(qkv, list): query, key, value = qkv else: qkv = qkv.view( concat([ batch_size, seqlen, num_attention_heads, 3, attention_head_size, ])) query, key, value = split(qkv, 1, dim=3) q_shape = concat([ batch_size, seqlen, num_attention_heads, attention_head_size, ]) query = query.view(q_shape) key = key.view(q_shape) value = value.view(q_shape) embedding_weight = RopeEmbeddingUtils.create_sinusoidal_positions( max_position_embeddings, half_head_size) embedding_weight /= rotary_embedding_scale embedding_weight = np.split(embedding_weight.squeeze(0), 2, axis=1) embedding_weight = np.concatenate( [ embedding_weight[0], embedding_weight[0], embedding_weight[1], embedding_weight[1], ], axis=1, ) if remove_input_padding: position_embedding = unsqueeze(position_embedding, 0) embedding_weight = embedding_weight.astype(trt_dtype_to_np(query.dtype)) embedding_weight = constant(embedding_weight) position_embedding = embedding(position_embedding, embedding_weight) position_embedding, block_embedding = split( position_embedding, 1, dim=1, ) sin0, cos0 = split(position_embedding, half_head_size, dim=3) sin1, cos1 = split(block_embedding, half_head_size, dim=3) new_shape = concat([ batch_size, seqlen, 1, half_head_size, ]) position_embedding = [ tensor.view(new_shape) for tensor in [cos0, cos1, sin0, sin1] ] query = RopeEmbeddingUtils.apply_rotary_pos_emb( tensor=query, position_embedding=position_embedding, pos_emb_type=PositionEmbeddingType.chatglm) key = RopeEmbeddingUtils.apply_rotary_pos_emb( tensor=key, position_embedding=position_embedding, pos_emb_type=PositionEmbeddingType.chatglm) if isinstance(qkv, list): qkv = [ query.view(input_shape), key.view(input_shape), value.view(input_shape), ] else: qkv = concat([query, key, value], dim=2) qkv = qkv.view(input_shape) return qkv
[docs] def make_causal_mask(bsz, tgt_len, past_key_values_length, dtype): _range = arange(start=constant(int32_array(0)), end=tgt_len, dtype=trt_dtype_to_str(dtype)) mask = repeat_interleave(_range, tgt_len, 0).view(concat([tgt_len, tgt_len])) mask = where(mask < mask.transpose(-1, -2), 1.0, 0.0) zero = constant(fp32_array(0)) zero = expand_dims(zero, [0, 1]) zero = expand(zero, concat([tgt_len, past_key_values_length])) mask = concat([zero, mask], dim=1) mask *= np.finfo(trt_dtype_to_np(dtype)).min.item() mask = mask.view(concat([1, 1, tgt_len, tgt_len + past_key_values_length])) mask = expand(mask, concat([bsz, 1, tgt_len, tgt_len + past_key_values_length])) return mask
[docs] def compute_relative_bias(query_length, key_length, num_buckets, max_distance, bidirectional, rel_attn_table, tp_size=1, tp_group=None, tp_rank=None): def make_relative_position_bucket(relative_position, bidirectional, num_buckets, max_distance): relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += where(relative_position > 0, num_buckets, 0) relative_position = relative_position.abs() else: relative_position = 0 - minimum(relative_position, 0) max_exact = num_buckets // 2 is_small = relative_position < max_exact max_exact_fp = constant(fp32_array(max_exact)) tmp = cast(relative_position, "float32") / max_exact_fp tmp = tmp.log() const1 = math.log(max_distance / max_exact) const2 = constant(fp32_array(num_buckets - max_exact)) relative_position_if_large = tmp / const1 * const2 relative_position_if_large = cast(relative_position_if_large, "int32") relative_position_if_large = max_exact + relative_position_if_large relative_position_if_large = minimum(relative_position_if_large, num_buckets - 1) relative_buckets += where(is_small, relative_position, relative_position_if_large) return relative_buckets context_position = arange(start=constant(int32_array(0)), end=query_length, dtype=trt_dtype_to_str(trt.int32)) context_position = unsqueeze(context_position, -1) memory_position = arange(start=constant(int32_array(0)), end=key_length, dtype=trt_dtype_to_str(trt.int32)) memory_position = unsqueeze(memory_position, 0) relative_position = memory_position - context_position relative_position_bucket = make_relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional, num_buckets, max_distance, ) # shape (query_length, key_length, num_heads) values = embedding(relative_position_bucket, rel_attn_table, tp_size=tp_size, tp_group=tp_group, tp_rank=tp_rank) # shape (1, num_heads, query_length, key_length) values = unsqueeze(values.permute([2, 0, 1]), 0) return values
[docs] class AttentionParams(object): def __init__(self, sequence_length: Tensor = None, context_lengths: Tensor = None, host_context_lengths: Tensor = None, max_context_length: int = None, host_request_types: Tensor = None, encoder_input_lengths: Tensor = None, encoder_max_input_length: Tensor = None): self.sequence_length = sequence_length self.context_lengths = context_lengths self.host_context_lengths = host_context_lengths # max allowed context length. Required to # compute scratch memory size. self.max_context_length = max_context_length self.host_request_types = host_request_types self.encoder_input_lengths = encoder_input_lengths self.encoder_max_input_length = encoder_max_input_length
[docs] def is_valid_cross_attn(self, do_cross_attention): if do_cross_attention: if self.encoder_input_lengths is None: return False if self.encoder_max_input_length is None: return False return True
[docs] def is_valid(self, gpt_attention_plugin, remove_input_padding): if gpt_attention_plugin: if self.sequence_length is None: return False if self.context_lengths is None: return False if self.host_request_types is None: return False if self.max_context_length is None: return False if remove_input_padding: if self.host_context_lengths is None: return False if not gpt_attention_plugin: return False return True
[docs] class KeyValueCacheParams: def __init__(self, past_key_value: List[Tensor] = None, host_past_key_value_lengths: Tensor = None, host_max_attention_window_sizes: Tensor = None, host_sink_token_length: Tensor = None, kv_cache_block_pointers: Tensor = None, host_kv_cache_block_pointers: Tensor = None, cache_indirection: Tensor = None, past_key_value_length: Tensor = None): self.past_key_value = past_key_value self.host_past_key_value_lengths = host_past_key_value_lengths self.host_max_attention_window_sizes = host_max_attention_window_sizes self.host_sink_token_length = host_sink_token_length self.kv_cache_block_pointers = kv_cache_block_pointers self.host_kv_cache_block_pointers = host_kv_cache_block_pointers self.cache_indirection = cache_indirection # self.past_key_value_length = past_key_value_length
[docs] def get_first_past_key_value(self): if self.past_key_value is None: return None return self.past_key_value[0]
[docs] def fill_none_tensor_list(self, list_size): if self.past_key_value is None: self.past_key_value = tuple([None] * list_size)
[docs] def is_valid(self, gpt_attention_plugin): if gpt_attention_plugin: if self.host_past_key_value_lengths is None: return False if self.host_max_attention_window_sizes is None: return False if self.host_sink_token_length is None: return False if self.cache_indirection is None: return False return True
[docs] class Attention(Module): def __init__( self, *, local_layer_idx, hidden_size, num_attention_heads, num_kv_heads=None, max_position_embeddings=1024, num_layers=1, apply_query_key_layer_scaling=False, attention_head_size=None, attention_mask_type=AttentionMaskType.padding, bias=True, dtype=None, position_embedding_type=PositionEmbeddingType.learned_absolute, rotary_embedding_base=10000.0, rotary_embedding_scaling=None, rotary_embedding_percentage=1.0, tp_group=None, tp_size=1, tp_rank=0, quant_mode: QuantMode = QuantMode(0), q_scaling=1.0, cross_attention=False, relative_attention=False, max_distance=0, num_buckets=0, dense_bias=None, clip_qkv=None, alibi_bias_max=8, skip_cross_qkv=False, ): super().__init__() self.layer_idx = local_layer_idx self.cross_attention = cross_attention self.attention_mask_type = attention_mask_type self.attention_head_size = hidden_size // num_attention_heads if attention_head_size is None else attention_head_size assert num_attention_heads % tp_size == 0, \ "num_attention_heads must be divisible by tp_size" self.num_attention_heads = num_attention_heads // tp_size self.num_attention_kv_heads = ( num_kv_heads + tp_size - 1 ) // tp_size if num_kv_heads is not None else self.num_attention_heads self.hidden_size = hidden_size self.attention_hidden_size = self.attention_head_size * self.num_attention_heads self.max_position_embeddings = max_position_embeddings self.bias = bias self.tp_group = tp_group self.tp_size = tp_size self.tp_rank = tp_rank self.dtype = dtype if dense_bias is None: dense_bias = bias self.unfuse_qkv_gemm = False self.num_layers = num_layers self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.norm_factor = math.sqrt(self.attention_head_size) self.q_scaling = q_scaling if self.apply_query_key_layer_scaling: self.norm_factor *= self.num_layers self.q_scaling *= self.num_layers # Whether to scale ALiBi bias. Mathematically, it's equivalent to # normalizing QK after adding bias. # - False, inv_sqrt_Dh * Q*K^T + alibi_bias # - True, inv_sqrt_Dh * Q*K^T + inv_sqrt_Dh * alibi_bias self.scale_alibi_bias = position_embedding_type == PositionEmbeddingType.alibi_with_scale self.alibi_bias_max = alibi_bias_max self.position_embedding_type = position_embedding_type self.relative_attention = relative_attention self.max_distance = max_distance self.num_buckets = num_buckets self.rotary_embedding_base = rotary_embedding_base self.rotary_embedding_scale_type = RotaryScalingType.none self.rotary_embedding_scale = 1.0 if rotary_embedding_scaling is not None: assert rotary_embedding_scaling["type"] in ["linear", "dynamic"] self.rotary_embedding_scale_type = RotaryScalingType.linear if rotary_embedding_scaling[ "type"] == "linear" else RotaryScalingType.dynamic self.rotary_embedding_scale = rotary_embedding_scaling["factor"] assert self.rotary_embedding_scale > 1.0 self.embed_positions = None self.rotary_enabled = False self.rotary_embedding_dim = 0 if self.position_embedding_type.is_rope(): self.rotary_embedding_dim = int(self.attention_head_size * rotary_embedding_percentage) self.rotary_enabled = True self.embed_positions = RopeEmbeddingUtils.create_sinusoidal_positions( self.max_position_embeddings, self.rotary_embedding_dim, ) self.quant_mode = quant_mode self.use_int8_kv_cache = self.quant_mode.has_int8_kv_cache() if self.quant_mode.has_kv_cache_quant(): self.kv_cache_scaling_factor = Parameter(shape=(1, ), dtype='float32') else: self.register_parameter('kv_cache_scaling_factor', None) # The output feature size is therefore (h/tp + 2*kvh/tp) * d, where h is num_heads, # d is head_size, kvh is the num_kv_heads and tp is tensor_parallel_size. # In ColumnLinear op, the output dim is calculated by (h + 2*kvh) * d / tp, # which matches the desired output size (h/tp + 2*kvh/tp) * d after splitting self.use_fp8_qdq = self.quant_mode.has_fp8_qdq() if self.use_fp8_qdq: self.qkv = FP8Linear( hidden_size, tp_size * self.num_attention_heads * self.attention_head_size + (2 * tp_size * self.num_attention_kv_heads * self.attention_head_size), bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) self.dense = FP8RowLinear(tp_size * self.num_attention_heads * self.attention_head_size, hidden_size, bias=dense_bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size) else: # out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size # example: d_model != num_heads * head_size in Flan-T5 self.qkv = QKVColumnLinear( hidden_size, tp_size * self.num_attention_heads * self.attention_head_size + (2 * tp_size * self.num_attention_kv_heads * self.attention_head_size), bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) self.dense = RowLinear(tp_size * self.num_attention_heads * self.attention_head_size, hidden_size, bias=dense_bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size) # per-layer relative attention table if relative_attention: self.rel_attn_table = Parameter(shape=(num_attention_heads // tp_size, num_buckets), dtype=dtype) if clip_qkv is not None: self.clip_qkv = fp32_array([clip_qkv]) else: self.clip_qkv = None self.skip_cross_qkv = skip_cross_qkv
[docs] def forward(self, hidden_states: Tensor, attention_mask=None, medusa_packed_mask=None, medusa_position_offsets=None, use_cache=False, kv_cache_params=None, attention_params=None, encoder_output: Optional[Tensor] = None, position_embedding=None, norm_before_bmm1=False, lora_layer_params=None, cross_kv_cache_gen: Optional[Tensor] = None, cross_qkv_reuse: Optional[Tensor] = None): assert isinstance(hidden_states, Tensor) alibi_slopes = None if self.position_embedding_type.is_alibi(): dtype = trt.float32 if default_net().plugin_config.gpt_attention_plugin: dtype = hidden_states.dtype alibi_scale = 1. / self.norm_factor if self.scale_alibi_bias else 1. alibi_slopes = generate_alibi_slopes( self.num_attention_heads * self.tp_size, dtype=dtype, tp_size=self.tp_size, tp_rank=self.tp_rank, alibi_scale=alibi_scale, alibi_bias_max=self.alibi_bias_max) qkv_lora_params = None if lora_layer_params is not None: if not self.cross_attention: qkv_lora_params = lora_layer_params.get_runtime_params( 0, "attn_qkv") else: qkv_lora_params = lora_layer_params.get_runtime_params( 0, "cross_attn_qkv") unfuse_qkv_gemm = self.unfuse_qkv_gemm if unfuse_qkv_gemm: qkv_gemm = [self.q, self.k, self.v] qkv = [gemm(hidden_states) for gemm in qkv_gemm] if default_net( ).plugin_config.lora_plugin and qkv_lora_params is not None: lora = self.qkv.lora(hidden_states, qkv_lora_params) kv_size = self.attention_head_size * self.num_attention_kv_heads qkv_lora = split(lora, [self.attention_hidden_size, kv_size, kv_size], dim=1) qkv = [tensor + lora for tensor, lora in zip(qkv, qkv_lora)] else: qkv = self.qkv(hidden_states, qkv_lora_params) if self.clip_qkv is not None: qkv = clip(qkv, -self.clip_qkv, self.clip_qkv) if default_net().plugin_config.remove_input_padding: if unfuse_qkv_gemm: for tensor in qkv: assert tensor.ndim() == 2 else: assert qkv.ndim() == 2 if default_net( ).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None: if not self.cross_attention: q_lora_params = lora_layer_params.get_runtime_params( 0, "attn_q") k_lora_params = lora_layer_params.get_runtime_params( 0, "attn_k") v_lora_params = lora_layer_params.get_runtime_params( 0, "attn_v") else: q_lora_params = lora_layer_params.get_runtime_params( 0, "cross_attn_q") k_lora_params = lora_layer_params.get_runtime_params( 0, "cross_attn_k") v_lora_params = lora_layer_params.get_runtime_params( 0, "cross_attn_v") assert (q_lora_params is not None and k_lora_params is not None and v_lora_params is not None) or \ (q_lora_params is None and k_lora_params is None and v_lora_params is None), "q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time." if q_lora_params is not None and k_lora_params is not None and v_lora_params is not None: qkv_lora_runtime_params = LoraRuntimeParams( lora_ranks=[ q_lora_params.lora_ranks[0], k_lora_params.lora_ranks[0], v_lora_params.lora_ranks[0] ], lora_weights_pointers=[ q_lora_params.lora_weights_pointers[0], k_lora_params.lora_weights_pointers[0], v_lora_params.lora_weights_pointers[0] ], host_request_types=q_lora_params.host_request_types, host_context_lengths=q_lora_params.host_context_lengths, max_context_length=q_lora_params.max_context_length, max_encoder_context_length=q_lora_params. max_encoder_context_length, host_encoder_input_lengths=q_lora_params. host_encoder_input_lengths, ) q_lora, k_lora, v_lora = self.qkv_lora(hidden_states, qkv_lora_runtime_params) qkv_lora = concat([q_lora, k_lora, v_lora], dim=q_lora.rank() - 1) qkv = qkv + qkv_lora if self.position_embedding_type == PositionEmbeddingType.chatglm: qkv = RopeEmbeddingUtils.apply_rotary_pos_emb_chatglm( qkv, position_embedding, self.num_attention_heads, self.attention_head_size, self.max_position_embeddings, self.rotary_embedding_scale, default_net().plugin_config.remove_input_padding, ) self.rotary_embedding_scale_type = RotaryScalingType.none self.rotary_embedding_scale = 1.0 paged_kv_cache = default_net().plugin_config.paged_kv_cache assert attention_params is None or attention_params.is_valid( default_net().plugin_config.gpt_attention_plugin, default_net().plugin_config.remove_input_padding) assert kv_cache_params is None or kv_cache_params.is_valid( default_net().plugin_config.gpt_attention_plugin) past_key_value = None if kv_cache_params is None else kv_cache_params.get_first_past_key_value( ) # if cross attention, cross QKV only needs to be calculated once in the # 1st decoding step --> write to cross KV cache --> remains constant # during the entire decoding steps. # 1st and >1st steps are distinguished by a boolean tensor `cross_kv_cache_gen` passed at runtime # also, cross KV cache max length is set from encoder output seqlen, # this maps to the max context length concept in decoder-only models cross_qkv = None if self.cross_attention and encoder_output: assert isinstance(encoder_output, Tensor) ## True branch: context phase, compute cross qkv cross_qkv_true = self.qkv(encoder_output, qkv_lora_params) if default_net( ).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None: cross_q_lora, cross_k_lora, cross_v_lora = self.qkv_lora( encoder_output, qkv_lora_runtime_params, is_cross_attention=True) cross_qkv_lora = concat( [cross_q_lora, cross_k_lora, cross_v_lora], dim=cross_q_lora.rank() - 1) cross_qkv_true = cross_qkv_true + cross_qkv_lora ## End True branch ## False branch: generation phase, no compute but need to obey shape constraints # because TRT's IfConditional requires the output shape of two subgraphs to be identical # our 1st attempt was to stack encoder_output [B, S, H] or [N, H] --> cross qkv [B, S, 3*H] or [N, 3*H], but it still introduces unnecessary concat. A better solution is to create a dummy torch tensor `cross_qkv_resue` with the correct shape and reuse it in every generation step cross_qkv_false = cross_qkv_reuse ## End False branch # IfConditional layer if self.skip_cross_qkv: cross_qkv = conditional(cross_kv_cache_gen, cross_qkv_true, cross_qkv_false) else: cross_qkv = cross_qkv_true if default_net().plugin_config.gpt_attention_plugin: if self.cross_attention and (past_key_value is not None): past_key_value = kv_cache_params.past_key_value[1] assert self.attention_mask_type in [ AttentionMaskType.causal, AttentionMaskType.bidirectional, AttentionMaskType.bidirectionalglm ], 'Plugin only support masked MHA.' # KV cache scales. kv_orig_quant_scale = constant( fp32_array([1.0]) ) / self.kv_cache_scaling_factor.value if self.quant_mode.has_kv_cache_quant( ) else None kv_quant_orig_scale = self.kv_cache_scaling_factor.value if self.quant_mode.has_kv_cache_quant( ) else None # Attention output scales assert ( not default_net().plugin_config.use_fp8_context_fmha ) or self.use_fp8_qdq, "FP8 Context FMHA must be used together with the fp8 quantization workflow." if self.use_fp8_qdq and default_net( ).plugin_config.use_fp8_context_fmha: # the attention plugin only quantizes the output when fp8 context fmha is enabled. attention_output_orig_quant_scale = constant( fp32_array([1.0] / self.dense.activation_scaling_factor.raw_value)) else: attention_output_orig_quant_scale = None context, past_key_value = gpt_attention( qkv=qkv, past_key_value=past_key_value, sequence_length=attention_params.sequence_length, host_past_key_value_lengths=kv_cache_params. host_past_key_value_lengths, host_max_attention_window_sizes=kv_cache_params. host_max_attention_window_sizes, host_sink_token_length=kv_cache_params.host_sink_token_length, context_lengths=attention_params.context_lengths, cache_indirection=kv_cache_params.cache_indirection, host_request_types=attention_params.host_request_types, layer_idx=self.layer_idx, num_heads=self.num_attention_heads, num_kv_heads=self.num_attention_kv_heads, hidden_size_per_head=self.attention_head_size, q_scaling=self.q_scaling, rotary_embedding_dim=self.rotary_embedding_dim, rotary_embedding_base=self.rotary_embedding_base, rotary_embedding_scale_type=self.rotary_embedding_scale_type, rotary_embedding_scale=self.rotary_embedding_scale, rotary_embedding_max_positions=self.max_position_embeddings, position_embedding_type=self.position_embedding_type, kv_orig_quant_scale=kv_orig_quant_scale, kv_quant_orig_scale=kv_quant_orig_scale, attention_output_orig_quant_scale= attention_output_orig_quant_scale, kv_cache_quant_mode=self.quant_mode, max_context_length=attention_params.max_context_length, mask_type=self.attention_mask_type, alibi_slopes=alibi_slopes, tp_size=self.tp_size, tp_rank=self.tp_rank, kv_cache_block_pointers=kv_cache_params.kv_cache_block_pointers, host_kv_cache_block_pointers=kv_cache_params. host_kv_cache_block_pointers, do_cross_attention=self.cross_attention, cross_qkv=cross_qkv, cross_qkv_length=attention_params.encoder_max_input_length, encoder_input_lengths=attention_params.encoder_input_lengths, relative_attention_bias=self.rel_attn_table.value if self.relative_attention else None, max_distance=self.max_distance, host_context_lengths=attention_params.host_context_lengths, use_cache=use_cache, medusa_position_offsets=medusa_position_offsets, medusa_packed_mask=medusa_packed_mask, ) else: # plain TensorRT mode assert paged_kv_cache == False def transpose_for_scores(x, rotary: bool = False, is_kv: bool = False): _num_attention_heads = self.num_attention_kv_heads if is_kv else self.num_attention_heads new_x_shape = concat([ shape(x, 0), shape(x, 1), _num_attention_heads, self.attention_head_size ]) if rotary: return x.view(new_x_shape) else: return x.view(new_x_shape).permute([0, 2, 1, 3]) # qkv after projection is of shape # [bs, seqlen, (num_attention_heads + 2 * num_attention_kv_heads), attention_head_size]. # The projected and split qkv after transpose_for_scores(): # Q[bs, num_attention_heads, seqlen, attention_head_size] # K[bs, num_attention_kv_heads, seqlen, attention_head_size] # V[bs, num_attention_kv_heads, seqlen, attention_head_size] kv_size = self.attention_head_size * self.num_attention_kv_heads if unfuse_qkv_gemm: query, key, value = qkv[0], qkv[1], qkv[2] else: query, key, value = split( qkv, [self.attention_hidden_size, kv_size, kv_size], dim=2) # in cross attention mode, replace kv by encoder_output if self.cross_attention and encoder_output is not None: encoder_qkv = self.qkv(encoder_output) _, key, value = split( encoder_qkv, [self.attention_hidden_size, kv_size, kv_size], dim=2) query = transpose_for_scores(query, rotary=self.rotary_enabled) key = transpose_for_scores(key, is_kv=True, rotary=self.rotary_enabled) value = transpose_for_scores(value, is_kv=True) if self.rotary_enabled: if is_same_dtype(self.dtype, trt.bfloat16): embed_positions = numpy_fp32_to_bf16( self.embed_positions.astype(np.float32)) embed_positions = constant(embed_positions) else: embed_positions = constant( self.embed_positions.astype(trt_dtype_to_np( query.dtype))) if self.rotary_embedding_dim is not None: # When shape(hidden_states, 1) > 1(Context phase), the embedding start from 0, # otherwise (Generation phase) move start to position start = where( shape(hidden_states, 1) > 1, 0, shape(past_key_value, 3)) size = where( shape(hidden_states, 1) > 1, shape(hidden_states, 1), 1) sincos = slice(embed_positions, concat([0, start, 0]), concat([1, size, self.rotary_embedding_dim])) sin, cos = split(sincos, self.rotary_embedding_dim // 2, dim=-1) key_rot_size = concat([ shape(key, 0), shape(key, 1), shape(key, 2), self.rotary_embedding_dim ]) query_rot_size = concat([ shape(query, 0), shape(query, 1), shape(query, 2), self.rotary_embedding_dim ]) remaining = shape(key, 3) - self.rotary_embedding_dim key_pass_size = concat([ shape(key, 0), shape(key, 1), shape(key, 2), remaining ]) query_pass_size = concat([ shape(query, 0), shape(query, 1), shape(query, 2), remaining ]) k_rot = slice(key, [0, 0, 0, 0], key_rot_size) k_pass = slice(key, [0, 0, 0, self.rotary_embedding_dim], key_pass_size) q_rot = slice(query, [0, 0, 0, 0], query_rot_size) q_pass = slice(query, [0, 0, 0, self.rotary_embedding_dim], query_pass_size) k_rot = RopeEmbeddingUtils.apply_rotary_pos_emb( k_rot, [cos, sin], self.position_embedding_type) q_rot = RopeEmbeddingUtils.apply_rotary_pos_emb( q_rot, [cos, sin], self.position_embedding_type) key = concat([k_rot, k_pass], dim=3) query = concat([q_rot, q_pass], dim=3) else: key = RopeEmbeddingUtils.apply_rotary_pos_emb( key, [cos, sin], self.position_embedding_type) query = RopeEmbeddingUtils.apply_rotary_pos_emb( query, [cos, sin], self.position_embedding_type) key = key.permute([0, 2, 1, 3]) query = query.permute([0, 2, 1, 3]) if past_key_value is not None and not self.cross_attention: if (self.use_fp8_qdq and self.quant_mode.has_kv_cache_quant() ) or self.use_int8_kv_cache: past_key_value = dequantize( past_key_value, self.kv_cache_scaling_factor.value) # past_key_value [bs, 2, num_heads, max_seq_len, head_dim] past_key, past_value = split(past_key_value, 1, dim=1) key_shape = concat([ shape(past_key, 0), shape(past_key, 2), shape(past_key, 3), shape(past_key, 4) ]) past_key = past_key.view(key_shape, zero_is_placeholder=False) past_value = past_value.view(key_shape, zero_is_placeholder=False) key = concat([past_key, key], dim=2) value = concat([past_value, value], dim=2) if use_cache: key_inflated_shape = concat([ shape(key, 0), 1, shape(key, 1), shape(key, 2), shape(key, 3) ]) inflated_key = key.view(key_inflated_shape, zero_is_placeholder=False) inflated_value = value.view(key_inflated_shape, zero_is_placeholder=False) past_key_value = concat([inflated_key, inflated_value], dim=1) # TRT quantizes the tensor value by doing `cast(clip(fp_value / scale))` while # the plugin quantizes it by doing `cast(clip(fp_value * scale))`. if (self.use_fp8_qdq and self.quant_mode.has_kv_cache_quant() ) or self.use_int8_kv_cache: past_key_value = quantize( past_key_value, self.kv_cache_scaling_factor.value, dtype='fp8' if self.use_fp8_qdq else 'int8') # MQA broadcast if self.num_attention_heads // self.num_attention_kv_heads > 1: key = repeat_interleave( key, self.num_attention_heads // self.num_attention_kv_heads, 1) value = repeat_interleave( value, self.num_attention_heads // self.num_attention_kv_heads, 1) key_length = shape(key, 2) # The following code creates a 2D tensor with 0s in the lower triangular (including the diagonal) and # +INF in the upper triangular parts. This bias tensor will be added to the output of the Q*K^T matrix # multiplication (BMM1). The +INF elements will be transformed to 0s by the Softmax operator that # follows. The elements that corresponds to 0s in the bias are unaffected by the bias tensor. # # Note that when we added to another bias tensor B (for example, with AliBi), the values in the lower- # triangular part of the B tensor are not affected and the upper-triangular ones are set to +INF. if self.attention_mask_type == AttentionMaskType.causal and not self.cross_attention: if self.position_embedding_type.is_alibi(): query_length = shape(query, 2) # bsz, tatget_length, past_key_value_length buffer = make_causal_mask(shape(query, 0), query_length, key_length - query_length, dtype) starts = concat([0, 0, 0, 0]) sizes = concat([1, 1, query_length, key_length]) generated_mask = slice(buffer, starts, sizes) else: query_length = shape(query, 2) starts = concat([0, 0, key_length - query_length, 0]) sizes = concat([1, 1, query_length, key_length]) select_buf = np.expand_dims( np.tril( np.ones( (self.max_position_embeddings, self.max_position_embeddings))).astype(bool), (0, 1)) select_buf = np.logical_not(select_buf) mask_buf = np.zeros_like(select_buf, np.float32) mask_buf[select_buf] = float('-inf') buffer = constant(mask_buf) generated_mask = slice(buffer, starts, sizes) elif self.attention_mask_type == AttentionMaskType.bidirectional and not self.cross_attention: query_length = shape(query, 2) zero_buf = np.expand_dims( np.zeros((self.max_position_embeddings, self.max_position_embeddings), dtype=np.float32), (0, 1)) zero_buf[:, :, :-1, -1] = 1 zero_buf *= -10000 mask = constant(zero_buf) # context phase, query_length mask_size = where(query_length > 1, query_length, 1) mask_start = where(query_length > 1, self.max_position_embeddings - mask_size, 1) start = concat([0, 0, mask_start, mask_start]) size = concat([1, 1, mask_size, mask_size]) generated_mask = slice(mask, start, size) if attention_mask is not None: if self.cross_attention: batch_size = shape(attention_mask, 0) query_len = shape(attention_mask, 1) encoder_input_len = shape(attention_mask, 2) attention_mask = attention_mask.view( concat([batch_size, 1, query_len, encoder_input_len])) attention_mask = where(attention_mask == 0, float('-inf'), 0.0) else: attention_mask = expand_mask(attention_mask, shape(query, 2)) bias = attention_mask if self.position_embedding_type.is_alibi(): alibi_biases = generate_alibi_biases(alibi_slopes, key_length) bias = alibi_biases if bias is None else bias + alibi_biases if self.relative_attention: query_length = shape(query, 2) relative_bias = compute_relative_bias( query_length + key_length - 1, key_length, self.num_buckets, self.max_distance, False, # bidirectional self.rel_attn_table.value.transpose(1, 0), tp_size=self.tp_size, tp_group=self.tp_group, tp_rank=self.tp_rank) start = concat([0, 0, query_length + key_length - 2, 0]) size = concat([ shape(relative_bias, 0), shape(relative_bias, 1), 1, shape(relative_bias, 3) ]) relative_bias = slice(relative_bias, start, size) key = key.permute([0, 1, 3, 2]) with precision('float32'): if norm_before_bmm1: # Apply norm on query earlier to prevent matmul fp16 overflow. query /= (self.q_scaling * self.norm_factor) if preview_trt_version( ) or self.position_embedding_type.is_alibi(): attention_scores = matmul(query, key) else: # For TRT 9.x, OOTB need this WAR to fuse mha. attention_scores = matmul(cast(query, 'float32'), cast(key, 'float32')) if not norm_before_bmm1: attention_scores = attention_scores / (self.q_scaling * self.norm_factor) if self.attention_mask_type in [ AttentionMaskType.causal, AttentionMaskType.bidirectional ] and not self.cross_attention: bias = generated_mask if bias is None else bias + generated_mask if bias is not None: bias = cast(bias, attention_scores.dtype) attention_scores = attention_scores + bias if self.relative_attention: attention_scores = attention_scores + relative_bias attention_probs = softmax(attention_scores, dim=-1) if preview_trt_version() or self.position_embedding_type.is_alibi(): # For trt_version() == 9.x and pos_embed == alibi, TRT has gpu buffer management issues. Need this WAR to avoid peak gpu mem regression. # A dummy reshape WAR for mha fusion for 10.0 attention_probs = attention_probs.view( concat([ shape(attention_probs, 0), shape(attention_probs, 1), shape(attention_probs, 2), shape(value, 2) ])) context = matmul(attention_probs, value, use_fp32_acc=False).permute([0, 2, 1, 3]) else: # For TRT 9.x, need this WAR to fuse mha. context = matmul(attention_probs, cast(value, 'float32')).permute([0, 2, 1, 3]) if context.dtype != value.dtype: context = cast(context, value.dtype) context = context.view( concat([ shape(context, 0), shape(context, 1), self.attention_hidden_size ])) dense_lora_params = None if lora_layer_params is not None: dense_lora_params = lora_layer_params.get_runtime_params( 0, "attn_dense") context = self.dense(context, lora_runtime_params=dense_lora_params) if use_cache: return (context, past_key_value) else: return context
[docs] class BertAttention(Module): def __init__(self, hidden_size, num_attention_heads, max_position_embeddings=1024, num_layers=1, attention_head_size=None, num_kv_heads=None, q_scaling=1.0, apply_query_key_layer_scaling=False, bias=True, dtype=None, tp_group=None, tp_size=1, tp_rank=0, relative_attention=False, max_distance=0, num_buckets=0): super().__init__() self.attention_head_size = hidden_size // num_attention_heads if attention_head_size is None else attention_head_size self.num_attention_heads = num_attention_heads // tp_size self.num_attention_kv_heads = ( num_kv_heads + tp_size - 1 ) // tp_size if num_kv_heads is not None else self.num_attention_heads self.hidden_size = hidden_size self.attention_hidden_size = self.attention_head_size * self.num_attention_heads self.max_position_embeddings = max_position_embeddings self.norm_factor = math.sqrt(self.attention_head_size) self.tp_group = tp_group self.tp_size = tp_size self.tp_rank = tp_rank self.num_layers = num_layers self.apply_query_key_layer_scaling = apply_query_key_layer_scaling self.norm_factor = math.sqrt(self.attention_head_size) self.q_scaling = q_scaling if self.apply_query_key_layer_scaling: self.norm_factor *= self.num_layers self.q_scaling *= self.num_layers self.dtype = dtype self.relative_attention = relative_attention self.max_distance = max_distance self.num_buckets = num_buckets # out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size # example: d_model != num_heads * head_size in Flan-T5 self.qkv = ColumnLinear(hidden_size, tp_size * self.attention_hidden_size + (2 * tp_size * self.num_attention_kv_heads * self.attention_head_size), bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) self.dense = RowLinear(tp_size * self.num_attention_heads * self.attention_head_size, hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size) # per-layer relative attention table if relative_attention: self.rel_attn_table = Parameter(shape=(num_attention_heads // tp_size, num_buckets), dtype=dtype)
[docs] def forward(self, hidden_states: Tensor, attention_mask=None, input_lengths=None, max_input_length=None, lora_layer_params=None): assert isinstance(hidden_states, Tensor) qkv_lora_params = None if lora_layer_params is not None: qkv_lora_params = lora_layer_params.get_runtime_params( 0, "attn_qkv") qkv = self.qkv(hidden_states, qkv_lora_params) if default_net().plugin_config.remove_input_padding: assert qkv.ndim() == 2 if default_net( ).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None: q_lora_params = lora_layer_params.get_runtime_params(0, "attn_q") k_lora_params = lora_layer_params.get_runtime_params(0, "attn_k") v_lora_params = lora_layer_params.get_runtime_params(0, "attn_v") assert (q_lora_params is not None and k_lora_params is not None and v_lora_params is not None) or \ (q_lora_params is None and k_lora_params is None and v_lora_params is None), "q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time." if q_lora_params is not None and k_lora_params is not None and v_lora_params is not None: qkv_lora_params = LoraRuntimeParams( lora_ranks=[ q_lora_params.lora_ranks[0], k_lora_params.lora_ranks[0], v_lora_params.lora_ranks[0] ], lora_weights_pointers=[ q_lora_params.lora_weights_pointers[0], k_lora_params.lora_weights_pointers[0], v_lora_params.lora_weights_pointers[0] ], host_request_types=q_lora_params.host_request_types, host_context_lengths=q_lora_params.host_context_lengths, max_context_length=q_lora_params.max_context_length) q_lora, k_lora, v_lora = self.qkv_lora(hidden_states, qkv_lora_params) qkv_lora = concat([q_lora, k_lora, v_lora], dim=q_lora.rank() - 1) qkv = qkv + qkv_lora if default_net().plugin_config.bert_attention_plugin: # TRT plugin mode assert input_lengths is not None context = bert_attention( qkv, input_lengths, self.num_attention_heads, self.attention_head_size, q_scaling=self.q_scaling, relative_attention=self.relative_attention, max_distance=self.max_distance, relative_attention_bias=self.rel_attn_table.value if self.relative_attention else None, max_input_length=max_input_length) else: # plain TRT mode def transpose_for_scores(x): new_x_shape = concat([ shape(x, 0), shape(x, 1), self.num_attention_heads, self.attention_head_size ]) return x.view(new_x_shape).permute([0, 2, 1, 3]) kv_size = self.attention_head_size * self.num_attention_kv_heads query, key, value = split( qkv, [self.attention_hidden_size, kv_size, kv_size], dim=2) query = transpose_for_scores(query) key = transpose_for_scores(key) value = transpose_for_scores(value) key = key.permute([0, 1, 3, 2]) attention_scores = matmul(query, key, use_fp32_acc=False) attention_scores = attention_scores / (self.q_scaling * self.norm_factor) if self.relative_attention: query_len = shape(attention_scores, 2) key_len = shape(attention_scores, 3) bias = compute_relative_bias( query_len, key_len, self.num_buckets, self.max_distance, True, # bidirectional self.rel_attn_table.value.transpose(1, 0), tp_size=self.tp_size, tp_group=self.tp_group, tp_rank=self.tp_rank) attention_scores = attention_scores + bias if attention_mask is not None: attention_mask = expand_mask(attention_mask, shape(query, 2)) attention_mask = cast(attention_mask, attention_scores.dtype) attention_scores = attention_scores + attention_mask attention_probs = softmax(attention_scores, dim=-1) context = matmul(attention_probs, value, use_fp32_acc=False).permute([0, 2, 1, 3]) context = context.view( concat([ shape(context, 0), shape(context, 1), self.attention_hidden_size ])) dense_lora_params = None if lora_layer_params is not None: dense_lora_params = lora_layer_params.get_runtime_params( 0, "attn_dense") context = self.dense(context, lora_runtime_params=dense_lora_params) return context