Source code for tensorrt_llm.layers.linear

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional

import numpy as np
import tensorrt as trt
import torch
import torch.nn.functional as F

from .._common import default_net, default_trtnet
from .._utils import pad_vocab_size, set_obj_attrs, str_dtype_to_trt
from ..functional import (Tensor, _add_plugin_info, _create_tensor, allgather,
                          allreduce, cast, matmul)
from ..mapping import Mapping
from ..module import Module
from ..parameter import Parameter
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
from .lora import LoraRuntimeParams


def _gemm_plugin(input: Tensor,
                 mat2: Tensor,
                 transa: bool = False,
                 transb: bool = False,
                 pad_lda: int = 0,
                 pad_ldb: int = 0,
                 use_fp8: bool = False,
                 strict_dtype: Optional[trt.DataType] = None) -> Tensor:
    '''
    output = op(mat2)op(input)

    Parameters:
        input : Tensor (On GPU)
            The input tensor.

        mat2 : Tensor (On GPU)
            The mat2 tensor.

        transa : bool
            Is the input tensor transposed? Set to 'True' if you want the
            input tensor to be transposed, 'False' otherwise.

        transb : bool
            Is the mat2 tensor transposed? Set to 'True' if you want the
            mat2 tensor to be transposed, 'False' otherwise.

        pad_lda: int
            Padding to the lead dimension of input tensor. It is used to
            support the strided GEMM that only uses the sub-tensor for
            computation. The GEMM plugin computation is
            [N, K] x [K, M+pad_lda] -> [N, M] if transa,
            [N, K] x [K+pad_lda, M] -> [N, M] if not transa.

        pad_ldb: int
            Padding to the lead dimension of mat2 tensor. It is used to
            support the strided GEMM that only uses the sub-tensor for
            computation. The GEMM plugin computation is
            [N, K+pad_ldb] x [K, M] -> [N, M] if transb,
            [N+pad_ldb, K] x [K, M] -> [N, M] if not transb.

        use_fp8: bool
            Do we use fp8 GEMM.

        strict_dtype: trt.DataType
            Set the data type for the GEMM plugin. If it is None, the data
            type is the gemm_plugin type set in the plugin_config.
    '''
    plg_creator = trt.get_plugin_registry().get_plugin_creator(
        'Gemm', '1', TRT_LLM_PLUGIN_NAMESPACE)
    assert plg_creator is not None

    transa = 1 if transa else 0
    transa = trt.PluginField("transa", np.array(transa, dtype=np.int32),
                             trt.PluginFieldType.INT32)
    transb = 1 if transb else 0
    transb = trt.PluginField("transb", np.array(transb, dtype=np.int32),
                             trt.PluginFieldType.INT32)
    pad_lda = trt.PluginField("pad_lda", np.array(pad_lda, dtype=np.int32),
                              trt.PluginFieldType.INT32)
    pad_ldb = trt.PluginField("pad_ldb", np.array(pad_ldb, dtype=np.int32),
                              trt.PluginFieldType.INT32)
    use_fp8 = 1 if use_fp8 else 0
    use_fp8 = trt.PluginField("use_fp8", np.array(use_fp8, dtype=np.int32),
                              trt.PluginFieldType.INT32)

    if strict_dtype is not None:
        assert isinstance(strict_dtype, trt.DataType)
        p_dtype = strict_dtype
    else:
        p_dtype = str_dtype_to_trt(default_net().plugin_config.gemm_plugin)
    pf_type = trt.PluginField("type_id", np.array([int(p_dtype)], np.int32),
                              trt.PluginFieldType.INT32)
    pfc = trt.PluginFieldCollection(
        [transa, transb, pad_lda, pad_ldb, pf_type, use_fp8])
    gemm_plug = plg_creator.create_plugin("gemm", pfc)
    plug_inputs = [input.trt_tensor, mat2.trt_tensor]
    layer = default_trtnet().add_plugin_v2(plug_inputs, gemm_plug)
    _add_plugin_info(layer, plg_creator, "gemm", pfc)
    return _create_tensor(layer.get_output(0), layer)


[docs] class Linear(Module): def __init__(self, in_features, out_features, bias=True, dtype=None, use_fp8=False, tp_group=None, tp_size=1, gather_output=True, share_weight=None, strict_dtype=False, pad_lda=0): super().__init__() self.in_features = in_features self.out_features = out_features // tp_size self.dtype = dtype self.use_fp8 = use_fp8 self.pad_lda = pad_lda if not share_weight: self.weight = Parameter(shape=(self.out_features, self.in_features), dtype=('fp8' if use_fp8 else dtype)) set_obj_attrs(self.weight, { "weight_loader": self.weight_loader, }) else: self.weight = share_weight self.tp_size = tp_size self.tp_group = tp_group self.gather_output = gather_output self.strict_dtype = self.dtype if strict_dtype else None if bias: self.bias = Parameter(shape=(self.out_features, ), dtype=dtype) set_obj_attrs(self.bias, { "weight_loader": self.weight_loader, }) else: self.register_parameter('bias', None)
[docs] def multiply_gather(self, x, weight, gemm_plugin, lora_runtime_params: LoraRuntimeParams = None): hidden_state = x if gemm_plugin: x = _gemm_plugin(x, weight, transb=True, pad_lda=self.pad_lda, use_fp8=self.use_fp8, strict_dtype=self.strict_dtype) else: x = matmul(x, weight, transb=True) if default_net( ).plugin_config.lora_plugin and lora_runtime_params is not None: x = x + self.lora(hidden_state, lora_runtime_params=lora_runtime_params) if self.bias is not None: bias = cast(self.bias.value, x.dtype) x = x + bias if self.gather_output and self.tp_size > 1 and self.tp_group is not None: # [dim0, local_dim] -> [dim0 * tp_size, local_dim] --> [dim0, local_dim * tp_size] x = allgather(x, self.tp_group, gather_dim=-1) return x
[docs] def forward(self, x, lora_runtime_params: LoraRuntimeParams = None): return self.multiply_gather(x, self.weight.value, default_net().plugin_config.gemm_plugin, lora_runtime_params=lora_runtime_params)
[docs] def weight_loader(self, mapping: Mapping, param: Parameter, loaded_weight: torch.Tensor): tp_rank = mapping.tp_rank output_dim = 0 shard_size = param._shape[output_dim] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) param.value = loaded_weight
ColumnLinear = Linear
[docs] class QKVColumnLinear(ColumnLinear):
[docs] def weight_loader(self, mapping: Mapping, param: Parameter, loaded_weight: torch.Tensor): tp_rank = mapping.tp_rank output_dim = 0 shard_size = param._shape[output_dim] // 3 start_idx = tp_rank * shard_size # reshape for qkv_weights assert loaded_weight.shape[output_dim] % 3 == 0 loaded_weight = loaded_weight.reshape( 3, loaded_weight.shape[output_dim] // 3, -1) loaded_weight = loaded_weight.narrow(output_dim + 1, start_idx, shard_size) loaded_weight = loaded_weight.reshape( loaded_weight.shape[output_dim + 1] * 3, -1) # for bias if len(param._shape) == 1: loaded_weight.squeeze_(-1) param.value = loaded_weight
[docs] class ParallelLMHead(ColumnLinear):
[docs] def weight_loader(self, mapping: Mapping, param: Parameter, loaded_weight: torch.Tensor): tp_rank = mapping.tp_rank output_dim = 0 shard_size = param._shape[output_dim] start_idx = tp_rank * shard_size # vocab padding for TP vocab_size = loaded_weight.shape[output_dim] pad_width = pad_vocab_size(vocab_size, self.tp_size) - vocab_size if pad_width > 0: loaded_weight = F.pad(loaded_weight, (0, 0, 0, pad_width), mode="constant", value=0) loaded_weight = loaded_weight.narrow(output_dim, start_idx, shard_size) param.value = loaded_weight
[docs] class RowLinear(Module): def __init__(self, in_features, out_features, bias=True, dtype=None, use_fp8=False, tp_group=None, tp_size=1, strict_dtype: bool = False, pad_lda=0): super().__init__() self.in_features = in_features // tp_size self.out_features = out_features self.dtype = dtype self.use_fp8 = use_fp8 self.pad_lda = pad_lda self.weight = Parameter(shape=(self.out_features, self.in_features), dtype=('fp8' if use_fp8 else dtype)) set_obj_attrs(self.weight, { "weight_loader": self.weight_loader, }) if bias: self.bias = Parameter(shape=(self.out_features, ), dtype=dtype) else: self.register_parameter('bias', None) self.tp_group = tp_group self.tp_size = tp_size self.strict_dtype = self.dtype if strict_dtype else None
[docs] def multiply_reduce(self, x, weight, gemm_plugin, use_fp8=False, lora_runtime_params: LoraRuntimeParams = None): hidden_state = x if gemm_plugin: x = _gemm_plugin(x, weight, transb=True, pad_lda=self.pad_lda, use_fp8=self.use_fp8, strict_dtype=self.strict_dtype) else: x = matmul(x, weight, transb=True) if default_net( ).plugin_config.lora_plugin and lora_runtime_params is not None: x = x + self.lora(hidden_state, lora_runtime_params=lora_runtime_params) if self.tp_size > 1 and self.tp_group is not None: x = allreduce(x, self.tp_group) if self.bias is not None: bias = cast(self.bias.value, x.dtype) x = x + bias return x
[docs] def forward(self, x, lora_runtime_params: LoraRuntimeParams = None): return self.multiply_reduce(x, self.weight.value, default_net().plugin_config.gemm_plugin, lora_runtime_params=lora_runtime_params)
[docs] def weight_loader(self, mapping: Mapping, param: Parameter, loaded_weight: torch.Tensor): tp_rank = mapping.tp_rank input_dim = 1 shard_size = param._shape[input_dim] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(input_dim, start_idx, shard_size) param.value = loaded_weight