#!/bin/bash set -ex GITHUB_URL="https://github.com" UCX_INSTALL_PATH="/usr/local/ucx/" CUDA_PATH="/usr/local/cuda" NIXL_VERSION="0.3.1" NIXL_REPO="https://github.com/ai-dynamo/nixl.git" ARCH_NAME="x86_64-linux-gnu" GDS_PATH="$CUDA_PATH/targets/x86_64-linux" if [ "$(uname -m)" != "amd64" ] && [ "$(uname -m)" != "x86_64" ]; then ARCH_NAME="aarch64-linux-gnu" GDS_PATH="$CUDA_PATH/targets/sbsa-linux" fi pip3 install --no-cache-dir meson ninja pybind11 git clone --depth 1 -b ${NIXL_VERSION} ${NIXL_REPO} cd nixl cuda_path=$(find / -name "libcuda.so.1" 2>/dev/null | head -n1) if [[ -z "$cuda_path" ]]; then echo "libcuda.so.1 not found " exit 1 fi ln -sf $cuda_path $CUDA_PATH/lib64/libcuda.so.1 meson setup builddir \ -Ducx_path=$UCX_INSTALL_PATH \ -Dcudapath_lib="$CUDA_PATH/lib64" \ -Dcudapath_inc="$CUDA_PATH/include" \ -Dgds_path="$GDS_PATH" \ -Dinstall_headers=true \ -Dstatic_plugins=UCX cd builddir && ninja install cd ../.. rm -rf nixl* # Remove NIXL source tree to save space rm $CUDA_PATH/lib64/libcuda.so.1 echo "export LD_LIBRARY_PATH=/opt/nvidia/nvda_nixl/lib/${ARCH_NAME}:/opt/nvidia/nvda_nixl/lib64:\$LD_LIBRARY_PATH" >> "${ENV}"