/* * Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2021, NAVER Corp. Authored by CLOVA. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "topKSamplingLayer.h" #include "tensorrt_llm/common/logger.h" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/kernels/samplingTopKKernels.h" #include "tensorrt_llm/layers/defaultDecodingParams.h" #include "tensorrt_llm/layers/layerUtils.h" #include #include using namespace tensorrt_llm::common; using namespace tensorrt_llm::kernels; using namespace tensorrt_llm::runtime; namespace tensorrt_llm::layers { template TopKSamplingLayer::TopKSamplingLayer( DecoderDomain const& decoderDomain, std::shared_ptr bufferManager) : BaseLayer(decoderDomain, bufferManager) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); allocateBuffer(mDecoderDomain.getBatchSize()); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopKSamplingLayer::allocateBuffer(SizeType32 const batchSize) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); mWorkspaceSize = getTopKWorkspaceSize(batchSize, 1, TOP_K_MAX, mDecoderDomain.getVocabSizePadded()); auto const batchSizeShape = ITensor::makeShape({batchSize}); mRuntimeTopKDevice = mBufferManager->gpu(batchSizeShape, TRTDataType::value); mRuntimeTopPDevice = mBufferManager->gpu(batchSizeShape, TRTDataType::value); mSkipDecodeDevice = mBufferManager->gpu(batchSizeShape, TRTDataType::value); mSetupWorkspaceSize = batchSize * sizeof(SizeType32); mSkipDecodeHost = mBufferManager->pinnedPool(batchSizeShape, TRTDataType::value); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopKSamplingLayer::setup(SizeType32 batchSize, SizeType32 beamWidth, TensorConstPtr batchSlots, std::shared_ptr const& baseSetupParams, std::shared_ptr const& workspace) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto setupParams = std::dynamic_pointer_cast(baseSetupParams); auto const defaultTopK = DefaultDecodingParams::getTopK(); auto runtimeTopK = setupParams->runtimeTopK.value_or(std::vector(batchSize, defaultTopK)); auto runtimeTopP = setupParams->runtimeTopP.value_or(std::vector{}); auto const runtimeTopKSize = runtimeTopK.size(); auto const runtimeTopPSize = runtimeTopP.size(); mNormalizeLogProbs = setupParams->normalizeLogProbs.has_value() && setupParams->normalizeLogProbs.value(); for (auto& topP : runtimeTopP) { if (topP < 0.f || topP > 1.0f) { TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP); topP = std::clamp(topP, 0.f, 1.f); } } for (auto& topK : runtimeTopK) { if (topK < 0 || topK > TOP_K_MAX) { TLLM_LOG_WARNING( "TopK (%d) is larger than max supported number (%d). Clip to max supported number.", topK, TOP_K_MAX); topK = std::clamp(topK, 0, static_cast(TOP_K_MAX)); } } auto const topK = *std::max_element(std::begin(runtimeTopK), std::end(runtimeTopK)); auto const topP = (runtimeTopPSize == 0) ? DefaultDecodingParams::getTopP() : runtimeTopP.front(); auto const* batchSlotsPtr = bufferCast(*batchSlots); auto const* batchSlotsDevicePtr = workspace->getDeviceBatchSlotsPtr(); auto* setupWorkspaceDevicePtr = workspace->getWorkspaceDevicePtrAs(); auto* runtimeTopPDevicePtr = bufferCast(*mRuntimeTopPDevice); auto* runtimeTopKDevicePtr = bufferCast(*mRuntimeTopKDevice); if (runtimeTopKSize > 1) { TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize, fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize)); DecodingLayerWorkspace::copyToWorkspace(*mBufferManager, runtimeTopK, workspace->getWorkspaceDeviceBuffer()); invokeScatterDecodingParams( setupWorkspaceDevicePtr, runtimeTopKDevicePtr, batchSlotsDevicePtr, batchSize, getStream()); } if (runtimeTopPSize > 1) { TLLM_CHECK_WITH_INFO(runtimeTopP.size() == batchSize, fmtstr("runtimeTopP.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopP.size(), batchSize)); DecodingLayerWorkspace::copyToWorkspace(*mBufferManager, runtimeTopP, workspace->getWorkspaceDeviceBuffer()); auto const* setupWorkspaceDeviceAsFloatPtr = workspace->getWorkspaceDevicePtrAs(); invokeScatterDecodingParams( setupWorkspaceDeviceAsFloatPtr, runtimeTopPDevicePtr, batchSlotsDevicePtr, batchSize, getStream()); } auto* skipDecodeDevicePtr = bufferCastOrNull(mSkipDecodeDevice); { dim3 block(std::min(static_cast(batchSize), 256u)); dim3 grid(divUp(static_cast(batchSize), block.x)); // support topK up to TOP_K_MAX. invokeSetupTopKRuntimeArgs(batchSize, topK, runtimeTopKDevicePtr, runtimeTopKSize, topP, runtimeTopPDevicePtr, runtimeTopPSize, skipDecodeDevicePtr, batchSlotsDevicePtr, getStream()); } mBufferManager->copy(*mSkipDecodeDevice, *mSkipDecodeHost); std::vector runtimeTopKs(mDecoderDomain.getBatchSize()); auto const runtimeTopKDeviceSlice = ITensor::slice(mRuntimeTopKDevice, 0, runtimeTopKs.size()); mBufferManager->copy(*runtimeTopKDeviceSlice, runtimeTopKs.data(), runtime::MemoryType::kCPU); { SizeType32 maxTopK = 0; for (SizeType32 bi = 0; bi < batchSize; ++bi) { auto bid = batchSlotsPtr[bi]; maxTopK = std::max(maxTopK, runtimeTopKs[bid]); } mRuntimeMaxTopK = std::max(mRuntimeMaxTopK, maxTopK); } TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template void TopKSamplingLayer::forwardAsync(std::shared_ptr const& outputs, std::shared_ptr const& baseInputs, std::shared_ptr const& workspace) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); auto inputs = std::dynamic_pointer_cast(baseInputs); auto const batchSize = inputs->logits.value()->getDimension<0>(); auto logits = bufferCastOrNull(inputs->logits); auto const* endIds = bufferCastOrNull(inputs->endIds); auto const probsComputed = inputs->probsComputed; auto const* batchSlotsHost = bufferCast(*inputs->batchSlots); auto* skipDecodeHostPtr = bufferCastOrNull(mSkipDecodeHost); auto const skip = allOfBatchSlots(batchSlotsHost, skipDecodeHostPtr, batchSize, true); if (skip) { return; } FinishedState const* finishedInput = (inputs->finished) ? reinterpret_cast(bufferCastOrNull(inputs->finished)) : nullptr; FinishedState* finishedOutput = (outputs->finished) ? reinterpret_cast(bufferCastOrNull(outputs->finished)) : nullptr; TopKSamplingKernelParams params; params.logProbs = logits; params.outputIdsPtrs = bufferCastOrNull(outputs->outputIdsPtr); params.workspace = workspace->getRawWorkspaceDevicePtr(); params.maxTopP = 1.0f; params.topPs = bufferCastOrNull(mRuntimeTopPDevice); params.maxTopK = mRuntimeMaxTopK; params.topKs = bufferCastOrNull(mRuntimeTopKDevice); params.sequenceLengths = bufferCastOrNull(outputs->sequenceLength); params.endIds = endIds; params.batchSlots = workspace->getDeviceBatchSlotsPtr(); params.finishedInput = finishedInput; params.finishedOutput = finishedOutput; params.skipDecode = bufferCastOrNull(mSkipDecodeDevice); params.cumLogProbs = bufferCastOrNull(outputs->cumLogProbs); params.outputLogProbs = bufferCastOrNull(outputs->outputLogProbsTiled); params.curandState = inputs->curandStates; params.batchSize = batchSize; params.maxBatchSize = mDecoderDomain.getBatchSize(); params.maxTokensPerStep = 1; params.vocabSizePadded = mDecoderDomain.getVocabSizePadded(); params.normalizeLogProbs = mNormalizeLogProbs; params.logitsHasProbs = probsComputed; invokeBatchTopKSampling(params, getStream()); TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__); } template size_t TopKSamplingLayer::getWorkspaceSize() const noexcept { return std::max(mWorkspaceSize, mSetupWorkspaceSize); } template class TopKSamplingLayer; template class TopKSamplingLayer; } // namespace tensorrt_llm::layers