/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/kernels/quantization.h" #include "tensorrt_llm/thop/thUtils.h" #include #include #include namespace torch_ext { // self: [M, K], fp16/bf16/fp8_quantized // globalScale: [1] float, = (448 * 6) / self.abs().max() // nvfp4: sfVecSize = 16, sfUseUE8M0 = false // mxfp4: sfVecSize = 32 (not supported yet), sfUseUE8M0 = true // alignment: sfVecSize // isSfSwizzledLayout: bool, if true, the scale factors are stored in swizzled layout, otherwise in linear layout. // See FP4QuantizationSFLayout enum for more details about the two layouts. // returns self_fp4, self_block_scale_factors // self_fp4: [M, K / 2], FLOAT4_E2M1X2 // self_block_scale_factors: ceil(M / 128) * 128 * ceil(K / sfVecSize / 4) * 4, SF_DTYPE (UE4M3 or UE8M0) std::tuple fp4_quantize( at::Tensor const& self, at::Tensor const& globalScale, int64_t sfVecSize, bool sfUseUE8M0, bool isSfSwizzledLayout) { CHECK_TH_CUDA(self); CHECK_CONTIGUOUS(self); CHECK_INPUT(globalScale, torch::kFloat32); TORCH_CHECK(sfVecSize == 16, "sfVecSize can only be 16"); auto const& inputShape = self.sizes(); auto const& rank = inputShape.size(); TORCH_CHECK(rank >= 2, "Input should be >=2D tensor."); int64_t m = 1; for (size_t i = 0; i < rank - 1; i++) { m *= inputShape[i]; } auto const k = inputShape[rank - 1]; TORCH_CHECK(k % sfVecSize == 0); std::vector outputShape(inputShape.begin(), inputShape.end()); outputShape[rank - 1] = k / 2; at::Tensor valueE2M1 = at::detail::empty_cuda(outputShape, FLOAT4_E2M1X2, self.device(), /* stride */ std::nullopt); int64_t SFSize = isSfSwizzledLayout ? tensorrt_llm::computeFP4SwizzledLayoutSFSize(m, k / sfVecSize) : tensorrt_llm::computeFP4LinearLayoutSFSize(m, k / sfVecSize); at::Tensor scaleFP8SF = at::detail::empty_cuda({SFSize}, SF_DTYPE, self.device(), /* stride */ std::nullopt); // 1D tensor const thread_local int mMultiProcessorCount = tensorrt_llm::common::getMultiProcessorCount(); auto const layout = isSfSwizzledLayout ? tensorrt_llm::FP4QuantizationSFLayout::SWIZZLED : tensorrt_llm::FP4QuantizationSFLayout::LINEAR; #define LAUNCH_FP4_QUANTIZE_KERNEL(T) \ tensorrt_llm::kernels::invokeFP4Quantization(m, k, reinterpret_cast(self.data_ptr()), \ globalScale.data_ptr(), reinterpret_cast(valueE2M1.data_ptr()), \ reinterpret_cast(scaleFP8SF.data_ptr()), sfUseUE8M0, layout, mMultiProcessorCount, \ at::cuda::getCurrentCUDAStream(self.get_device())); if (self.scalar_type() == at::ScalarType::Half) { LAUNCH_FP4_QUANTIZE_KERNEL(half) } else if (self.scalar_type() == at::ScalarType::BFloat16) { #ifdef ENABLE_BF16 LAUNCH_FP4_QUANTIZE_KERNEL(__nv_bfloat16) #else C10_THROW_ERROR(NotImplementedError, "BFloat16 must be enabled to quantize an bf16 tensor to fp4."); #endif } else if (self.scalar_type() == at::ScalarType::Float8_e4m3fn) { #ifdef ENABLE_FP8 LAUNCH_FP4_QUANTIZE_KERNEL(__nv_fp8_e4m3) #else C10_THROW_ERROR(NotImplementedError, "FP8 must be enabled to quantize an fp8 tensor to fp4."); #endif } else { C10_THROW_ERROR(NotImplementedError, "fp4_quantize only supports input tensor with dtypes fp16/bf16/e4m3."); } #undef LAUNCH_FP4_QUANTIZE_KERNEL return {valueE2M1, scaleFP8SF}; } } // namespace torch_ext TORCH_LIBRARY_FRAGMENT(trtllm, m) { m.def( "fp4_quantize(Tensor input, Tensor globalScale, int sfVecSize, bool sfUseUE8M0=False, bool swizzedLayout=True) " "-> (Tensor, Tensor)"); } TORCH_LIBRARY_IMPL(trtllm, CUDA, m) { m.impl("fp4_quantize", &torch_ext::fp4_quantize); }