/* * Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "DevKernel.h" #include "RoutingKernel.h" #include "tensorrt_llm/common/cudaDriverWrapper.h" #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/KernelRunner.h" #include "tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/trtllmGen_bmm_export/trtllm/gen/DtypeDecl.h" #include namespace tensorrt_llm { namespace kernels { namespace trtllmGenFp8BlockScaleMoe { namespace Routing { // The type of method in top-K routing, for use in torch custom op // Please keep this in sync with the counterpart defined in tensorrt_llm/_torch/modules/fused_moe/routing.py enum class RoutingMethodType : int64_t { // Default: Softmax -> TopK Default = 0, // Renormalize: TopK -> Softmax Renormalize = 1, // DeepSeekV3: Sigmoid -> RoutingBiasAdd -> Top2 in group -> Top4 groups -> Top8 experts from the Top4 groups DeepSeekV3 = 2, // Llama4: Top1 -> Sigmoid Llama4 = 3, // RenormalizeNaive: Softmax -> TopK -> Renormalize RenormalizeNaive = 4, // Unspecified Unspecified = 5, }; inline std::string serializeMoeRoutingMethodType(RoutingMethodType routingMethodType) { switch (routingMethodType) { case RoutingMethodType::Default: return "Default"; case RoutingMethodType::Renormalize: return "Renormalize"; case RoutingMethodType::DeepSeekV3: return "DeepSeekV3"; case RoutingMethodType::Llama4: return "Llama4"; case RoutingMethodType::RenormalizeNaive: return "RenormalizeNaive"; default: TLLM_CHECK_WITH_INFO(false, "Invalid routing method"); return ""; }; } inline int32_t getMaxPermutedPaddedCount( int32_t numTokens, int32_t expertsPerToken, int32_t numExperts, int32_t padding) { auto const expandedRowCount = numTokens * expertsPerToken; auto const maxPaddingRequired = (padding - 1) * numExperts; return common::roundUp(expandedRowCount + maxPaddingRequired, padding); } inline int32_t getMaxNumCtasInBatchDim(int32_t numTokens, int32_t topK, int32_t numExperts, int32_t tileTokensDim) { // Get maximum number of CTAs in batch dim per expert. auto const maxCtasInBatchDimPerExpert = common::ceilDiv(numTokens, tileTokensDim); // Get maximum enabled experts. auto const maxEnabledExperts = std::min(numTokens * topK, numExperts); // Get maximum number of CTAs in batch dim. auto maxNumCtasInBatchDim = maxEnabledExperts * maxCtasInBatchDimPerExpert; // For large token counts, the above bound can be pessimistic since not all the tokens can // be routed to all the enabled experts. Instead we can essentially bound the number of CTAs // by permuted buffer size. However, this method will be overly pessimistic for low-token // counts auto const tilesForPermutedBuffer = common::ceilDiv(getMaxPermutedPaddedCount(numTokens, topK, numExperts, tileTokensDim), tileTokensDim); // Set maxNumCtasInBatchDim to be the minimum of the two methods maxNumCtasInBatchDim = std::min(maxNumCtasInBatchDim, tilesForPermutedBuffer); return maxNumCtasInBatchDim; } class Runner { public: explicit Runner(); explicit Runner(int32_t tileTokensDim); void run(void* routingLogits, void* routingBias, int32_t numTokens, int32_t numExperts, int32_t topK, int32_t nGroups, int32_t topkGroups, int32_t localExpertOffset, int32_t localNumExperts, float routedScalingFactor, int32_t* routingExpertIndexes, int32_t* expertCountHistogram, int32_t* permutedIdxSize, int32_t* expandedIdxToPermutedIdx, int32_t* permutedIdxToExpandedIdx, int32_t* permutedIdxToTokenIdx, void* expertWeights, int32_t* numTokensPerExpert, int32_t* ctaIdxXyToBatchIdx, int32_t* ctaIdxXyToMnLimit, int32_t* numNonExitingCtas, batchedGemm::trtllm::gen::Dtype dtypeElt, bool useRoutingScalesOnInput, bool useDeepSeekFp8, RoutingMethodType routingMethodType, cudaStream_t stream); private: int32_t mTileTokensDim{8}; }; } // namespace Routing namespace PermuteGemm1 { class Runner { public: explicit Runner(batchedGemm::trtllm::gen::Dtype dtypeElt, bool useDeepSeekFp8, int tileTokensDim); size_t getWorkspaceSizeInBytes( int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numExperts, int32_t numTokens); void run(void* hiddenState, void* hiddenStateScale, void* weight, void* weightScale, void* expertWeights, float* outputScalesScalar, float* outputScalesGateScalar, void* output, void* outputScale, int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numExperts, int32_t numTokens, int32_t* permutedIdxToTokenIdx, int32_t* ptrNumNonExitingCtas, int32_t* ptrTotalNumPaddedTokens, int32_t* ptrCtaIdxXyToBatchIdx, int32_t* ptrCtaIdxXyToMnLimit, void* bmm1Workspace, bool useRoutingScalesOnInput, int device, cudaStream_t stream); private: batchedGemm::trtllm::gen::Dtype mDtypeElt; int32_t mTileTokensDim; tensorrt_llm::kernels::TrtllmGenBatchedGemmRunner mRunner; }; } // namespace PermuteGemm1 namespace Gemm2 { class Runner { public: explicit Runner(batchedGemm::trtllm::gen::Dtype dtypeElt, batchedGemm::trtllm::gen::Dtype outputDtype, bool useDeepSeekFp8, int tileTokensDim); size_t getWorkspaceSizeInBytes( int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numExperts, int32_t numTokens); void run(void* permutedHiddenState, void* permutedHiddenStateScale, void* weight, void* weightScale, float* outputScalesScalar, void* output, void* outputScale, int32_t topK, int32_t hiddenSize, int32_t intermediateSize, int32_t numExperts, int32_t numTokens, int32_t* ptrNumNonExitingCtas, int32_t* ptrTotalNumPaddedTokens, int32_t* ptrCtaIdxXyToBatchIdx, int32_t* ptrCtaIdxXyToMnLimit, void* bmm2Workspace, int device, cudaStream_t stream); private: batchedGemm::trtllm::gen::Dtype mDtypeElt; batchedGemm::trtllm::gen::Dtype mOutputDtype; int32_t mTileTokensDim; tensorrt_llm::kernels::TrtllmGenBatchedGemmRunner mRunner; }; } // namespace Gemm2 namespace MoE { namespace btg = batchedGemm::trtllm::gen; struct MoERunnerArgs { void* routing_logits = nullptr; // [num_tokens, num_experts] in float, generated after gemm(hidden_state, routing_weights) void* routing_bias = nullptr; // [num_experts] in bfloat16 for now = mDtypeExpW void* hidden_states = nullptr; // [num_tokens, hidden_size] in fp8 = mDtypeElt // [hidden_size/128, num_tokens] in float for e4m3 DS recipe // and [num_tokens, hidden_size/16] in float for e2m1 void* hidden_states_scale = nullptr; // Gemm input: void* gemm1_weights = nullptr; void* gemm1_weights_scale = nullptr; void* gemm2_weights = nullptr; void* gemm2_weights_scale = nullptr; int32_t num_tokens{0}; int32_t num_experts{0}; int32_t hidden_size{0}; // TODO: only compiled routing kernel supports top_k = 8 int32_t top_k{0}; int32_t n_group{0}; // TODO: only compiled routing kernel supports topk_group = 4 int32_t topk_group{0}; float routed_scaling_factor{0.0f}; int32_t intermediate_size{0}; int32_t local_expert_offset{0}; int32_t local_num_experts{0}; // TODO: support other types btg::Dtype mDtypeElt{btg::Dtype::Void}; btg::Dtype mDtypeExpW{btg::Dtype::Bfloat16}; btg::Dtype mDtypeOut{btg::Dtype::Bfloat16}; // Apply routing scale factors to input activations bool mUseRoutingScalesOnInput{false}; bool mUseDeepSeekFp8{false}; float* output1_scales_scalar = nullptr; float* output1_scales_gate_scalar = nullptr; float* output2_scales_scalar = nullptr; // Output: void* output = nullptr; float* output_scale = nullptr; // finalize bool do_finalize{true}; }; struct MoEWorkspace { // Routing intermediate outputs: int32_t* routing_expert_indexes = nullptr; int32_t* permuted_idx_size = nullptr; int32_t* total_num_padded_tokens = nullptr; // TODO: duplicate of permuted_idx_size int32_t total_max_padded_tokens{0}; int32_t* expanded_idx_to_permuted_idx = nullptr; int32_t* permuted_idx_to_expanded_idx = nullptr; int32_t* permuted_idx_to_token_idx = nullptr; void* expert_weights = nullptr; // [num_tokens, top_k] in bfloat16 = mDtypeExpW int32_t* cta_idx_xy_to_batch_idx = nullptr; int32_t* cta_idx_xy_to_mn_limit = nullptr; int32_t* num_non_exiting_ctas = nullptr; void* hidden_states_scale_linear = nullptr; // Permute intermediate outputs: void* permuted_hidden_states = nullptr; float* permuted_hidden_states_scale = nullptr; // Gemm1 intermediate outputs: int32_t ProjUpTileN{0}; void* gemm1_output = nullptr; float* gemm1_output_scale = nullptr; // Activation intermediate outputs: void* activation_output = nullptr; float* activation_output_scale = nullptr; // Gemm2 intermediate outputs: void* gemm2_output = nullptr; float* gemm2_output_scale = nullptr; // Finalize intermediate outputs (placeholder not used) void* finalize_output = nullptr; float* finalize_output_scale = nullptr; // FC1 workspace: void* bmm1_workspace = nullptr; // FC2 workspace: void* bmm2_workspace = nullptr; }; class Runner { public: // FIXME: tileTokensDim is hardcoded for now Runner(batchedGemm::trtllm::gen::Dtype dtypeElt, bool useDeepSeekFp8, int tileTokensDim = 8); void run(MoERunnerArgs const& args, MoEWorkspace const& workspace, int device, cudaStream_t stream); std::tuple getWorkspaceSizeInBytes(MoERunnerArgs const& args); private: void setOpsData(MoERunnerArgs const& args, MoEWorkspace const& workspace, moe::dev::convertsf::Data& convertSfData, moe::dev::activation::Data& activationData, moe::dev::finalize::Data& finalizeData); private: PermuteGemm1::Runner mPermuteGemm1; Gemm2::Runner mGemm2; }; } // namespace MoE } // namespace trtllmGenFp8BlockScaleMoe } // namespace kernels } // namespace tensorrt_llm