# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import Iterable, List, Optional, Union import click import datasets import numpy as np from .._torch import LLM as PyTorchLLM from ..llmapi import LLM, RequestOutput from ..logger import logger from ..sampling_params import GuidedDecodingParams, SamplingParams from .interface import Evaluator class JsonModeEval(Evaluator): def __init__(self, dataset_path: Optional[str] = None, num_samples: Optional[int] = None, random_seed: int = 0, apply_chat_template: bool = True, system_prompt: Optional[str] = None): if not apply_chat_template: raise ValueError( f"{self.__class__.__name__} requires apply_chat_template=True.") super().__init__(random_seed=random_seed, apply_chat_template=apply_chat_template, system_prompt=system_prompt) if dataset_path is None: dataset_path = "NousResearch/json-mode-eval" self.data = datasets.load_dataset(dataset_path, split="train", trust_remote_code=True) self.data = self.data.shuffle(random_seed) if num_samples is None: self.num_samples = self.data.num_rows else: self.num_samples = min(num_samples, self.data.num_rows) def generate_samples(self) -> Iterable[tuple]: for i, sample in enumerate(self.data): if i >= self.num_samples: break sampling_args = { "guided_decoding": GuidedDecodingParams(json=sample["schema"]) } yield sample["prompt"], sampling_args, sample["completion"] def compute_score(self, outputs: List[RequestOutput], references: List[str]) -> float: all_corrections = [] for output, ref in zip(outputs, references): try: output_json = json.loads(output.outputs[0].text) except json.JSONDecodeError: all_corrections.append(False) continue ref_json = json.loads(ref) all_corrections.append(output_json == ref_json) acc = np.mean(all_corrections) * 100 logger.info( f"JSON Mode Eval accuracy: {acc:.2f} ({len(all_corrections)})") return acc @click.command("json_mode_eval") @click.option("--dataset_path", type=str, default=None, help="The path to JSON Mode Eval dataset. " "If unspecified, the dataset is downloaded from HF hub.") @click.option( "--num_samples", type=int, default=None, help="Number of samples to run the evaluation; None means full dataset." ) @click.option("--random_seed", type=int, default=0, help="Random seed for dataset processing.") @click.option("--system_prompt", type=str, default=None, help="System prompt.") @click.option("--max_input_length", type=int, default=1024, help="Maximum prompt length.") @click.option("--max_output_length", type=int, default=512, help="Maximum generation length.") @click.pass_context @staticmethod def command(ctx, dataset_path: Optional[str], num_samples: int, random_seed: int, system_prompt: Optional[str], max_input_length: int, max_output_length: int) -> None: llm: Union[LLM, PyTorchLLM] = ctx.obj sampling_params = SamplingParams( max_tokens=max_output_length, truncate_prompt_tokens=max_input_length) evaluator = JsonModeEval(dataset_path, num_samples=num_samples, random_seed=random_seed, apply_chat_template=True, system_prompt=system_prompt) evaluator.evaluate(llm, sampling_params) llm.shutdown()