/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fmhaRunner.h" #include "fused_multihead_attention_v2.h" #include #include #include #include #include namespace tensorrt_llm { namespace kernels { union __half2_uint32_t_union { half2 fp162; uint32_t u32; }; union __float_uint32_t_union { float fp32; uint32_t u32; }; static inline void set_alpha(uint32_t& alpha, float norm, Data_type dtype) { if (dtype == DATA_TYPE_FP16) { __half2_uint32_t_union temp; temp.fp162 = __float2half2_rn(norm); alpha = temp.u32; } else if (dtype == DATA_TYPE_FP32) { __float_uint32_t_union temp; temp.fp32 = norm; alpha = temp.u32; } else if (dtype == DATA_TYPE_INT32) { int32_t inorm = static_cast(norm); alpha = reinterpret_cast(inorm); } else if (dtype == DATA_TYPE_BF16) { // TODO HACK!! BF16 Outputs are computed in FP32 for FP8. // This is because cublas does not allow current FP32 output. alpha = reinterpret_cast(norm); } else { assert(false); } } //////////////////////////////////////////////////////////////////////////////////////////////////// class FusedMHARunnerV2::mhaImpl { public: mhaImpl(const Data_type data_type, const int numHeads, const int headSize, const float qScaling, int sm_) : mDataType(data_type) , mNumHeads(numHeads) , mHeadSize(headSize) , mQScaling(qScaling) , sm(sm_) { TLLM_CHECK_WITH_INFO( (sm == kSM_80 || sm == kSM_86 || sm == kSM_89 || sm == kSM_90), "Unsupported architecture"); TLLM_CHECK_WITH_INFO((mDataType == DATA_TYPE_FP16 || mDataType == DATA_TYPE_BF16), "Unsupported data type"); pagedKVXmmaKernel = getPagedKVXMMAKernelsV2(mDataType, sm); xmmaKernel = getXMMAKernelsV2(mDataType, sm); mParams.clear(); mPagedKVParams.clear(); // get device attributes int device_id; cudaGetDevice(&device_id); cudaDeviceGetAttribute(&mLaunchParams.multi_processor_count, cudaDevAttrMultiProcessorCount, device_id); cudaDeviceGetAttribute(&mLaunchParams.device_l2_cache_size, cudaDevAttrL2CacheSize, device_id); } ~mhaImpl() {} // Shared setup function. template void setup_params(Params& params, const int b, const int s_q, const int s_kv, const int sliding_window_size, const int total_seqlen, const bool has_alibi, const bool scale_alibi, const int tp_size, const int tp_rank) { const float inv_sqrt_scale = (1.f / (sqrtf(mHeadSize) * mQScaling)); // Note that we apply scales and bias in the order of // (bmm1_output * scale_bmm1 + alibi) * scale_after_alibi const float scale_after_alibi = scale_alibi ? inv_sqrt_scale : 1.0f; const float scale_bmm1 = scale_alibi ? 1.0f : inv_sqrt_scale; const float scale_softmax = 1.f; // Seems to be only required for int8 const float scale_bmm2 = 1.f; Data_type scale_type = mLaunchParams.force_fp32_acc ? DATA_TYPE_FP32 : mDataType; // Use specialized ws kernels on Hopper for cases without alibi. if (mLaunchParams.useKernelWithoutAlibi) { // The kernel adopts the log2f optimziation. constexpr float kLog2e = 1.4426950408889634074; // log_2(e) = M_LOG2E set_alpha(params.scale_bmm1, scale_bmm1 * float(kLog2e), DATA_TYPE_FP32); } else { set_alpha(params.scale_bmm1, scale_bmm1, scale_type); } set_alpha(params.scale_softmax, scale_softmax, scale_type); set_alpha(params.scale_bmm2, scale_bmm2, scale_type); params.b = b; params.h = mNumHeads; params.s = s_q; params.d = mHeadSize; params.sliding_window_size = sliding_window_size; params.o_stride_in_bytes = mNumHeads * mHeadSize * sizeof(half); // Total sequence length needed by TMA descriptor // it should be actual total seq length if non-padded input is given. mTotalSeqLen = total_seqlen; // alibi. if (has_alibi) { params.has_alibi = true; params.alibi_params = AlibiParams(mNumHeads, s_kv, tp_size, tp_rank, scale_after_alibi); } } // Support packed QKV. void setup(const int b, const int s, const int sliding_window_size, const int total_seqlen, const bool has_alibi, const bool scale_alibi, const int tp_size, const int tp_rank) { // Determine launch parameters. // Hopper: fallback to original fmha_v2 when head_size <= 64 and seq_len <= 256 mLaunchParams.set_default_kernel_selection_params(); const bool isSm90 = (sm == kSM_90); const bool isSm8x = (sm == kSM_86 || sm == kSM_89); const bool isSm80 = (sm == kSM_80); if (isSm90 && mHeadSize <= 64 && s <= 256) { mLaunchParams.flash_attention = false; // get max sequence length for non-flash-attentio mLaunchParams.kernel_s = getSFromMaxSeqLen(s); } else { // always use flash attention kernels for Ampere/Ada mLaunchParams.flash_attention = true; // flash attention kernles s = 0 (support any seq length) mLaunchParams.kernel_s = 0; mLaunchParams.force_unroll = true; // enable tiled kernels on Ampere/Ada if (mLaunchParams.flash_attention && s <= 64) { // flash attention tiled kernels allows larger free dim tile size (M, N) with flexibility // in unroll dimension tile size (K). for short sequence length (s<=128), tiled kernels // can suffer from tile quantization loss therefore use flash attention non-tiled instead mLaunchParams.granular_tiling = false; } else if (isSm8x && mHeadSize < 256) { // flash attention tiled kernel is faster on Ada and Ampere derivatives when head_size>=256 mLaunchParams.granular_tiling = false; } else if (isSm80 || isSm8x) { // otherwise, choose tiled kernel for Ampere/Ada mLaunchParams.granular_tiling = true; } } // when flash attention is enabled on Hopper, we need to set the tma descriptors if (isSm90 && mLaunchParams.flash_attention) { mLaunchParams.warp_specialization = true; mLaunchParams.use_tma = true; } // Use specialized ws kernels on Hopper for cases without alibi. if (mLaunchParams.warp_specialization && !has_alibi) { // Use specialized ws kernels for cases without alibi. mLaunchParams.useKernelWithoutAlibi = true; } // Sliding_window_causal mask. if (s > sliding_window_size && mLaunchParams.attention_mask_type == ContextAttentionMaskType::CAUSAL) { mLaunchParams.attention_mask_type = ContextAttentionMaskType::SLIDING_WINDOW_CAUSAL; } // Set kernel parameters. setup_params(mParams, b, s, s, sliding_window_size, total_seqlen, has_alibi, scale_alibi, tp_size, tp_rank); mParams.qkv_stride_in_bytes = (mNumHeads + 2 * mParams.h_kv) * mHeadSize * sizeof(half); } // Support paged_kv_cache and chunked_attention. void setup_paged_kv(const int b, const int s_q, const int s_kv, const int blocks_per_context_sequence, const int tokens_per_kv_block, const int sliding_window_size, const int total_seqlen, const bool has_alibi, const bool scale_alibi, const int tp_size, const int tp_rank) { // Determine launch parameters. mLaunchParams.set_default_kernel_selection_params(); TLLM_CHECK_WITH_INFO(tokens_per_kv_block >= 128, "FMHA with paged kv cache needs tokens_per_block >= 128 !"); // Needed by TMA descriptors. mLaunchParams.blocks_per_context_sequence = blocks_per_context_sequence; // Hopper: fallback to original fmha_v2 when head_size <= 64 and seq_len <= 256 const bool isSm90 = (sm == kSM_90); const bool isSm8x = (sm == kSM_86 || sm == kSM_89); const bool isSm80 = (sm == kSM_80); // always use flash attention kernels. mLaunchParams.flash_attention = true; // flash attention kernles s = 0 (support any seq length) mLaunchParams.kernel_s = 0; mLaunchParams.kernel_kv_s = s_kv; mLaunchParams.force_unroll = true; // enable warp-specialization kernels when s > 512. if (isSm90 && s_kv > 512) { mLaunchParams.warp_specialization = true; mLaunchParams.use_tma = true; } else { // enable tiled kernels on Ampere/Ada if (mLaunchParams.flash_attention && s_kv <= 64) { // flash attention tiled kernels allows larger free dim tile size (M, N) with flexibility // in unroll dimension tile size (K). for short sequence length (s<=128), tiled kernels // can suffer from tile quantization loss therefore use flash attention non-tiled instead mLaunchParams.granular_tiling = false; } else if (isSm8x && mParams.d < 256) { // flash attention tiled kernel is faster on Ada and Ampere derivatives when head_size>=256 mLaunchParams.granular_tiling = false; } else if (isSm90 || isSm80 || isSm8x) { // otherwise, choose tiled kernel for Ampere/Ada mLaunchParams.granular_tiling = true; } } // Use specialized ws kernels on Hopper for cases without alibi. if (mLaunchParams.warp_specialization && !has_alibi) { // Use specialized ws kernels for cases without alibi. mLaunchParams.useKernelWithoutAlibi = true; } // Sliding_window_causal mask. if (s_kv > sliding_window_size && mLaunchParams.attention_mask_type == ContextAttentionMaskType::CAUSAL) { mLaunchParams.attention_mask_type = ContextAttentionMaskType::SLIDING_WINDOW_CAUSAL; } setup_params( mPagedKVParams, b, s_q, s_kv, sliding_window_size, total_seqlen, has_alibi, scale_alibi, tp_size, tp_rank); mPagedKVParams.q_stride_in_bytes = mNumHeads * mHeadSize * sizeof(half); mPagedKVParams.kv_stride_in_bytes = tokens_per_kv_block * mHeadSize * sizeof(half); } // NOTE: assume that heads_interleaved = false (b, s, 3, h, d), and sequences are padded/non-padded // TMA descriptors are used as grid_constant parameters (remove MemCpyH2D operations) void set_tma_descriptors() { // split D into multiple groups in order to match the TMA swizzle mode (128B) const uint32_t d_in_bytes = mParams.d * sizeof(uint16_t); const uint32_t d_groups = d_in_bytes > 128 ? d_in_bytes / 128 : 1; // separate q, k, and v tma descriptors Multiple_tma_descriptor<4> qkv_tma_descriptor; // tensor size uint32_t tensor_size_qkv[4]; if (mParams.h_kv < mParams.h) { // if multi-query or grouped-query tensor_size_qkv[2] = 1; tensor_size_qkv[1] = (mParams.h + 2 * mParams.h_kv); tensor_size_qkv[0] = mParams.d; // mParams.d; } else { tensor_size_qkv[2] = 3; tensor_size_qkv[1] = mParams.h; tensor_size_qkv[0] = mParams.d; // mParams.d; } // box size for k and v uint32_t box_size[4]; // Update this on device? box_size[2] = 1; box_size[1] = 1; box_size[0] = mParams.d / d_groups; // stride size in bytes. Assumes least significant dim is 1 (?) uint64_t tensor_stride_qkv[3]; tensor_stride_qkv[0] = tensor_size_qkv[0] * sizeof(uint16_t); // d tensor_stride_qkv[1] = tensor_size_qkv[1] * tensor_stride_qkv[0]; // d*h tensor_stride_qkv[2] = tensor_size_qkv[2] * tensor_stride_qkv[1]; // d*h*3 // traversal stride uint32_t traversal_stride_qkv[4] = {1, 1, 1, 1}; // OOB fill zeros uint32_t oob_fill = 0; // FP32 to TF32 conversion disabled uint32_t fp32_to_tf32 = 0; // gmma descriptor mode const uint32_t d_bytes_per_group = (mParams.d * sizeof(uint16_t)) / d_groups; const cudaTmaDescSwizzle swizzle_mode = (d_bytes_per_group > 64 ? cudaTmaDescSwizzle::SWIZZLE_128B : (d_bytes_per_group > 32 ? cudaTmaDescSwizzle::SWIZZLE_64B : cudaTmaDescSwizzle::SWIZZLE_32B)); uint32_t q_step = 0, kv_step = 0; for (unsigned int i = 0u; i < sizeof(sTmaMetaInfo) / sizeof(sTmaMetaInfo[0]); ++i) { if (sTmaMetaInfo[i].mD == mParams.d) { q_step = sTmaMetaInfo[i].mQStep; kv_step = sTmaMetaInfo[i].mKVStep; break; } } // QKV [TOTAL, 3, h, d] // NOTE: we may need to use actual seqlen to set oob_value const char* qkv_ptr = reinterpret_cast(mParams.qkv_ptr); tensor_size_qkv[3] = mTotalSeqLen; // Q: STEP_Q box_size[3] = q_step; qkv_tma_descriptor.set_tma_desctriptor(qkv_ptr, cudaTmaDescFormat::F16_RN, cudaTmaDescInterleave::INTERLEAVE_DISABLED, swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_qkv, tensor_stride_qkv, traversal_stride_qkv, box_size, oob_fill, fp32_to_tf32, &mParams.tma_desc_q); // K/V: STEP_KV box_size[3] = kv_step; qkv_tma_descriptor.set_tma_desctriptor(qkv_ptr, cudaTmaDescFormat::F16_RN, cudaTmaDescInterleave::INTERLEAVE_DISABLED, swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_qkv, tensor_stride_qkv, traversal_stride_qkv, box_size, oob_fill, fp32_to_tf32, &mParams.tma_desc_k); qkv_tma_descriptor.set_tma_desctriptor(qkv_ptr, cudaTmaDescFormat::F16_RN, cudaTmaDescInterleave::INTERLEAVE_DISABLED, swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_qkv, tensor_stride_qkv, traversal_stride_qkv, box_size, oob_fill, fp32_to_tf32, &mParams.tma_desc_v); } // Q are contiguous in the shape of [B, S, H, D] // Paged KV has [B, 2, NumBlocksPerSequence] buffers, // and each points to the contiguous buffer with shape [H, TokensPerBlock, D] // TMA descriptors need cudaMemcpyAsync since we need multiple tma descriptors in device memory. void set_paged_kv_tma_descriptors(cudaStream_t stream) { // split D into multiple groups in order to match the TMA swizzle mode (128B) const uint32_t d_in_bytes = mPagedKVParams.d * sizeof(uint16_t); const uint32_t d_groups = d_in_bytes > 128 ? d_in_bytes / 128 : 1; uint32_t q_step = 0, kv_step = 0; for (unsigned int i = 0u; i < sizeof(sTmaPagedKVMetaInfo) / sizeof(sTmaPagedKVMetaInfo[0]); ++i) { if (sTmaPagedKVMetaInfo[i].mD == mPagedKVParams.d) { q_step = sTmaPagedKVMetaInfo[i].mQStep; kv_step = sTmaPagedKVMetaInfo[i].mKVStep; break; } } // Separate q, and paged kv tma descriptors. Multiple_tma_descriptor<4> q_tma_descriptor; Multiple_tma_descriptor<4> paged_kv_tma_descriptor( mPagedKVParams.b * 2 * mLaunchParams.blocks_per_context_sequence); // Contiguous Q // query tensor size [B x S, 1, H, D] uint32_t tensor_size_q[4]; tensor_size_q[3] = mTotalSeqLen; tensor_size_q[2] = 1; tensor_size_q[1] = mPagedKVParams.h; tensor_size_q[0] = mPagedKVParams.d; // box size for k and v uint32_t box_size_q[4]; box_size_q[3] = q_step; box_size_q[2] = 1; box_size_q[1] = 1; box_size_q[0] = mPagedKVParams.d / d_groups; // stride size in bytes. uint64_t tensor_stride_q[3]; tensor_stride_q[0] = tensor_size_q[0] * sizeof(uint16_t); tensor_stride_q[1] = tensor_size_q[1] * tensor_stride_q[0]; tensor_stride_q[2] = tensor_size_q[2] * tensor_stride_q[1]; // traversal stride uint32_t traversal_stride[4] = {1, 1, 1, 1}; // OOB fill zeros uint32_t oob_fill = 0; // FP32 to TF32 conversion disabled uint32_t fp32_to_tf32 = 0; // gmma descriptor mode const uint32_t d_bytes_per_group = (mPagedKVParams.d * sizeof(uint16_t)) / d_groups; const cudaTmaDescSwizzle swizzle_mode = (d_bytes_per_group > 64 ? cudaTmaDescSwizzle::SWIZZLE_128B : (d_bytes_per_group > 32 ? cudaTmaDescSwizzle::SWIZZLE_64B : cudaTmaDescSwizzle::SWIZZLE_32B)); // Q ptr. const char* q_ptr = reinterpret_cast(mPagedKVParams.q_ptr); // Q: STEP_Q. q_tma_descriptor.set_tma_desctriptor(q_ptr, cudaTmaDescFormat::F16_RN, cudaTmaDescInterleave::INTERLEAVE_DISABLED, swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_q, tensor_stride_q, traversal_stride, box_size_q, oob_fill, fp32_to_tf32, &mPagedKVParams.tma_desc_q); // Paged KV // Per batch tensor size. uint32_t tensor_size_kv[4]; tensor_size_kv[3] = 1; tensor_size_kv[2] = mPagedKVParams.h_kv; tensor_size_kv[1] = mPagedKVParams.paged_kv_cache.mTokensPerBlock; tensor_size_kv[0] = mPagedKVParams.d; // Box size for k and v. uint32_t box_size_kv[4]; box_size_kv[3] = 1; box_size_kv[2] = 1; box_size_kv[1] = kv_step; box_size_kv[0] = mPagedKVParams.d / d_groups; // Stride size in bytes. uint64_t tensor_stride_kv[3]; tensor_stride_kv[0] = tensor_size_kv[0] * sizeof(uint16_t); tensor_stride_kv[1] = tensor_size_kv[1] * tensor_stride_kv[0]; tensor_stride_kv[2] = tensor_size_kv[2] * tensor_stride_kv[1]; // 2 stands for k, and v blocks. // We only need to prepare as many tma descriptos as the number of paged kv blocks for context. for (int block_idx = 0; block_idx < mPagedKVParams.b * 2 * mLaunchParams.blocks_per_context_sequence; block_idx++) { int block_ptr_idx = int(block_idx / mLaunchParams.blocks_per_context_sequence) * mPagedKVParams.paged_kv_cache.mMaxBlocksPerSeq + (block_idx % mLaunchParams.blocks_per_context_sequence); paged_kv_tma_descriptor.set_tma_desctriptor( reinterpret_cast(mLaunchParams.paged_kv_block_ptrs[block_ptr_idx]), cudaTmaDescFormat::F16_RN, cudaTmaDescInterleave::INTERLEAVE_DISABLED, swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_kv, tensor_stride_kv, traversal_stride, box_size_kv, oob_fill, fp32_to_tf32, block_idx); } // set mMaxBlocksPerSeq to the number of blocks needed for context. mPagedKVParams.paged_kv_cache.mMaxBlocksPerSeq = mLaunchParams.blocks_per_context_sequence; paged_kv_tma_descriptor.copy_to_device(mPagedKVParams.tma_desc_paged_kv, stream); } void setup_flags(const bool force_fp32_acc, const bool is_s_padded, const bool causal_mask, const int num_kv_heads) { // BF16 FMHA only accumulates on FP32 mLaunchParams.force_fp32_acc = mDataType == DATA_TYPE_BF16 || force_fp32_acc; mLaunchParams.attention_mask_type = causal_mask ? ContextAttentionMaskType::CAUSAL : ContextAttentionMaskType::PADDING; // Paged KV Cache. mPagedKVParams.h_kv = num_kv_heads; TLLM_CHECK_WITH_INFO(mNumHeads % num_kv_heads == 0, "number of Query heads should be multiple of KV heads !"); mPagedKVParams.h_q_per_kv = mNumHeads / num_kv_heads; mPagedKVParams.is_s_padded = is_s_padded; // Contiguous Cache. mParams.h_kv = num_kv_heads; mParams.is_s_padded = is_s_padded; } bool fmha_supported() { return MHARunner::fmha_supported(mHeadSize, sm); } void run(const void* qkvPtr, const void* cuSeqlenPtr, void* outputPtr, cudaStream_t stream) { mParams.qkv_ptr = qkvPtr; mParams.o_ptr = outputPtr; mParams.cu_seqlens = reinterpret_cast(cuSeqlenPtr); if (sm == kSM_90 && mLaunchParams.use_tma) { // memcpy H2D has been removed by applying grid_constant tma descriptors. set_tma_descriptors(); } xmmaKernel->run(mParams, mLaunchParams, stream); } void run_paged_kv(const void* qPtr, void* pagedKVTmaDesc, const void* pagedKVBlockPtrsOnHost, const KVBlockArray pagedKVCache, const void* cuQSeqlenPtr, const void* cuKVSeqlenPtr, void* outputPtr, cudaStream_t stream) { mPagedKVParams.q_ptr = qPtr; mPagedKVParams.tma_desc_paged_kv = reinterpret_cast(pagedKVTmaDesc); mPagedKVParams.paged_kv_cache = pagedKVCache; mPagedKVParams.o_ptr = outputPtr; mPagedKVParams.cu_q_seqlens = reinterpret_cast(cuQSeqlenPtr); mPagedKVParams.cu_seqlens = reinterpret_cast(cuKVSeqlenPtr); // paged kv block device ptrs on host (used by tma descriptors). mLaunchParams.paged_kv_block_ptrs = reinterpret_cast(pagedKVBlockPtrsOnHost); if (sm == kSM_90 && mLaunchParams.use_tma) { // memcpy H2D is needed as we use multiple tma descriptors in device memory. set_paged_kv_tma_descriptors(stream); } pagedKVXmmaKernel->run(mPagedKVParams, mLaunchParams, stream); } bool isValid(int s) const { return pagedKVXmmaKernel->isValid(s) && xmmaKernel->isValid(s); } int getSFromMaxSeqLen(const int max_seq_len) { int S = 1024; if (max_seq_len <= 64) { S = 64; } else if (max_seq_len <= 128) { S = 128; } else if (max_seq_len <= 256) { S = 256; } else if (max_seq_len <= 384) { S = 384; } else if (max_seq_len <= 512) { S = 512; } // for bert and vit, use flash attention when s >= 512 else if (max_seq_len > 512) { S = max_seq_len; } return S; } private: Fused_multihead_attention_params_v2 mParams; Fused_multihead_attention_paged_kv_params_v2 mPagedKVParams; Launch_params mLaunchParams; int sm; const FusedMultiHeadAttentionXMMAKernelV2* xmmaKernel; const FusedMultiHeadAttentionPagedKVXMMAKernelV2* pagedKVXmmaKernel; bool use_flash_attention = false; const Data_type mDataType; const int mNumHeads; const int mHeadSize; const float mQScaling; int mTotalSeqLen; }; //////////////////////////////////////////////////////////////////////////////////////////////////// FusedMHARunnerV2::FusedMHARunnerV2( const Data_type data_type, const int numHeads, const int headSize, const float qScaling) : pimpl(new mhaImpl(data_type, numHeads, headSize, qScaling, tensorrt_llm::common::getSMVersion())) { } FusedMHARunnerV2::~FusedMHARunnerV2() = default; void FusedMHARunnerV2::setup(const int b, const int s, const int sliding_window_size, const int total_seqlen, const bool has_alibi, const bool scale_alibi, const int tp_size, const int tp_rank) { pimpl->setup(b, s, sliding_window_size, total_seqlen, has_alibi, scale_alibi, tp_size, tp_rank); } void FusedMHARunnerV2::setup_paged_kv(const int b, const int s_q, const int s_kv, const int blocks_per_context_sequence, const int tokens_per_kv_block, const int sliding_window_size, const int total_seqlen, const bool has_alibi, const bool scale_alibi, const int tp_size, const int tp_rank) { pimpl->setup_paged_kv(b, s_q, s_kv, blocks_per_context_sequence, tokens_per_kv_block, sliding_window_size, total_seqlen, has_alibi, scale_alibi, tp_size, tp_rank); } bool FusedMHARunnerV2::fmha_supported() { return pimpl->fmha_supported(); } void FusedMHARunnerV2::setup_flags( const bool force_fp32_acc, const bool is_s_padded, const bool causal_mask, const int num_kv_heads) { pimpl->setup_flags(force_fp32_acc, is_s_padded, causal_mask, num_kv_heads); } void FusedMHARunnerV2::run(const void* qkvPtr, const void* cuSeqlenPtr, void* outputPtr, cudaStream_t stream) { pimpl->run(qkvPtr, cuSeqlenPtr, outputPtr, stream); } void FusedMHARunnerV2::run_paged_kv(const void* qPtr, void* pagedKVTmaDesc, const void* pagedKVBlockPtrsOnHost, const KVBlockArray pagedKVCache, const void* cuQSeqlenPtr, const void* cuKVSeqlenPtr, void* outputPtr, cudaStream_t stream) { pimpl->run_paged_kv( qPtr, pagedKVTmaDesc, pagedKVBlockPtrsOnHost, pagedKVCache, cuQSeqlenPtr, cuKVSeqlenPtr, outputPtr, stream); } bool FusedMHARunnerV2::isValid(int s) const { return pimpl->isValid(s); } // static function to check if fmha is supported when building plugins bool MHARunner::fmha_supported(const int headSize, const int sm) { if (sm == kSM_80 || sm == kSM_86 || sm == kSM_89) { return (headSize == 16 || headSize == 32 || headSize == 40 || headSize == 64 || headSize == 80 || headSize == 128 || headSize == 160 || headSize == 256); } else if (sm == kSM_90) { return (headSize == 32 || headSize == 64 || headSize == 128 || headSize == 256); } return false; } } // namespace kernels } // namespace tensorrt_llm