/* * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bindings.h" #include "tensorrt_llm/batch_manager/common.h" #include "tensorrt_llm/batch_manager/microBatchScheduler.h" #include "tensorrt_llm/pybind/utils/bindTypes.h" namespace py = pybind11; namespace tb = tensorrt_llm::batch_manager; namespace tle = tensorrt_llm::executor; using namespace tensorrt_llm::runtime; namespace tensorrt_llm::pybind::batch_manager { void initBindings(pybind11::module_& m) { py::class_(m, "ContextChunkingConfig") .def(py::init(), py::arg("chunking_policy"), py::arg("chunk_unit_size")) .def_readwrite("chunking_policy", &tb::batch_scheduler::ContextChunkingConfig::chunkingPolicy) .def_readwrite("chunk_unit_size", &tb::batch_scheduler::ContextChunkingConfig::chunkUnitSize); } } // namespace tensorrt_llm::pybind::batch_manager