/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/executor/types.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/gptDecoderBatched.h" #include "tensorrt_llm/runtime/modelConfig.h" #include "tensorrt_llm/runtime/runtimeKernels.h" #include "tensorrt_llm/runtime/worldConfig.h" #include using namespace tensorrt_llm::runtime; namespace tle = tensorrt_llm::executor; namespace tc = tensorrt_llm::common; namespace { decoder_batch::Input prepareDecoderInputs(SizeType32 batchSize, SizeType32 maxBeamWidth, SizeType32 maxSeqLength, SizeType32 vocabSizePadded, nvinfer1::DataType dataType, std::vector& samplingConfigs, std::vector const& generatedTokensPerSteps, bool computeLogProbs, BufferManager& manager) { std::vector logits; logits.reserve(batchSize); auto constexpr tokenId = 1; for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx) { auto const beamWidth = samplingConfigs[batchIdx].beamWidth; samplingConfigs[batchIdx].outputLogProbs = {{computeLogProbs}}; samplingConfigs[batchIdx].cumLogProbs = {{computeLogProbs}}; logits.emplace_back( manager.gpu(ITensor::makeShape({generatedTokensPerSteps[batchIdx], beamWidth, vocabSizePadded}), dataType)); manager.setZero(*logits.back()); } decoder_batch::Input inputs{logits}; if (maxBeamWidth > 1) { auto srcCacheIndirection = manager.gpu(ITensor::makeShape({batchSize, maxBeamWidth, maxSeqLength}), TRTDataType::value); manager.setZero(*srcCacheIndirection); inputs.cacheIndirection = std::move(srcCacheIndirection); } return inputs; } decoder_batch::Output prepareDecoderOutputs(SizeType32 batchSize, SizeType32 maxBeamWidth, SizeType32 maxSeqLength, std::vector const& tiledInputLengths, BufferManager& manager) { decoder_batch::Output outputs{}; auto sequenceLengths = manager.copyFrom(tiledInputLengths, ITensor::makeShape({batchSize, maxBeamWidth}), MemoryType::kGPU); outputs.sequenceLengths = std::move(sequenceLengths); if (maxBeamWidth > 1) { auto tgtCacheIndirection = manager.gpu(ITensor::makeShape({batchSize, maxBeamWidth, maxSeqLength}), TRTDataType::value); manager.setZero(*tgtCacheIndirection); outputs.cacheIndirection = std::move(tgtCacheIndirection); } return outputs; } std::vector prepareRequests(SizeType32 batchSize, SizeType32 maxNewTokens, std::vector const& inputLengths, std::vector const& generatedTokensPerSteps, std::vector const& acceptedTokensPerStep, TokenIdType tokenId, TokenIdType endId, TokenIdType padId, BufferManager& manager) { auto& stream = manager.getStream(); std::vector requests; requests.reserve(batchSize); for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx) { auto shape = ITensor::makeShape({inputLengths[batchIdx]}); auto input = manager.gpu(shape, TRTDataType::value); kernels::invokeFill(*input, tokenId, stream); requests.emplace_back(decoder_batch::Request{std::move(input), inputLengths[batchIdx], maxNewTokens, endId}); if (generatedTokensPerSteps[batchIdx] > 1) { std::vector draftTokens(generatedTokensPerSteps[batchIdx] - 1); std::fill(draftTokens.begin(), draftTokens.begin() + acceptedTokensPerStep[batchIdx], 1023); requests.back().draftTokens = manager.copyFrom(draftTokens, MemoryType::kGPU); requests.back().generatedTokensPerEngineStep = generatedTokensPerSteps[batchIdx]; } } return requests; } void advanceSequenceLengths(std::vector& sequenceLengths, std::vector const& acceptedTokensPerStep, std::vector const& samplingConfigs, SizeType32 batchSize, SizeType32 maxBeamWidth) { for (int batchIdx = 0; batchIdx < batchSize; batchIdx++) { for (int beamId = 0; beamId < samplingConfigs.at(batchIdx).beamWidth; beamId++) { sequenceLengths.at(tc::flat_index2(batchIdx, beamId, maxBeamWidth)) += acceptedTokensPerStep.at(batchIdx) + 1; } } } void checkSequenceLengths( ITensor const& sequenceLengths, std::vector const& expectedLengths, BufferManager& manager) { auto sequenceLengthsHost = manager.copyFrom(sequenceLengths, MemoryType::kCPU); auto sequenceLengthsHostRange = BufferRange(*sequenceLengthsHost); EXPECT_THAT(sequenceLengthsHostRange, ::testing::ElementsAreArray(expectedLengths)); } void verifyResults(BufferManager& manager, GptDecoderBatched const& decoder, std::vector const& samplingConfigs, std::vector const& inputLengths, std::vector const& sequenceLengths, SizeType32 batchSize, SizeType32 maxBeamWidth, SizeType32 maxSeqLength, SizeType32 tokenId, SizeType32 padId) { auto outputsIds = decoder.getIds(); // TODO: test parentIds // parentIds = decoder.getParentIds(); ASSERT_TRUE(outputsIds); auto outputShape = outputsIds->getShape(); EXPECT_EQ(outputShape.nbDims, 3); EXPECT_EQ(outputShape.d[0], batchSize); EXPECT_EQ(outputShape.d[1], maxBeamWidth); EXPECT_EQ(outputShape.d[2], maxSeqLength); auto outputsIdsHost = manager.copyFrom(*outputsIds, MemoryType::kCPU); auto output = bufferCast(*outputsIdsHost); manager.getStream().synchronize(); for (auto b = 0; b < batchSize; ++b) { auto samplingConfig = samplingConfigs.at(b); for (auto bw = 0; bw < samplingConfig.beamWidth; ++bw) { auto const result = (samplingConfig.beamWidth == 1) ? 1023 : bw; auto const outputPtr = output + tc::flat_index(outputShape.d, b, bw, 0); auto begin = outputPtr; auto end = outputPtr + inputLengths.at(b); ASSERT_LE(begin, end) << "bad input length " << inputLengths.at(b); ASSERT_THAT(std::vector(begin, end), ::testing::Each(tokenId)) << "input tokens: " << "b:" << b << " bw: " << bw; begin = end; end = outputPtr + sequenceLengths.at(tc::flat_index2(b, bw, maxBeamWidth)); ASSERT_LE(begin, end) << "bad seq length " << sequenceLengths.at(b); ASSERT_THAT(std::vector(begin, end), ::testing::Each(result)) << "new tokens: " << "b:" << b << " bw: " << bw; begin = end; end = outputPtr + maxSeqLength; ASSERT_LE(begin, end) << "bad max length " << maxSeqLength; ASSERT_THAT(std::vector(begin, end), ::testing::Each(padId)) << "padding: " << "b:" << b << " bw: " << bw; } } } void testDecoder(nvinfer1::DataType const dtype, std::vector& samplingConfigs, SizeType32 maxBeamWidth, bool computeLogProbs, bool normalizeLogProbs) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); SizeType32 constexpr tensorParallelism{1}; SizeType32 constexpr pipelineParallelism{1}; SizeType32 constexpr localRank{0}; WorldConfig const worldConfig{tensorParallelism, pipelineParallelism, localRank}; SizeType32 constexpr vocabSize{51200}; SizeType32 constexpr nbAttentionLayers{2}; SizeType32 constexpr nbRnnLayers{0}; SizeType32 constexpr nbHeads{16}; SizeType32 constexpr hiddenSize{1024}; ModelConfig modelConfig{ vocabSize, nbAttentionLayers + nbRnnLayers, nbAttentionLayers, nbRnnLayers, nbHeads, hiddenSize, dtype}; modelConfig.useGptAttentionPlugin(false); auto streamPtr = std::make_shared(); BufferManager manager(streamPtr); TokenIdType constexpr endId{50257}; TokenIdType constexpr padId{50257}; auto const dataType = modelConfig.getDataType(); auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize()); auto const batchSize = static_cast(samplingConfigs.size()); SizeType32 constexpr maxInputLength{8}; SizeType32 const maxNewTokens{2}; auto const maxSeqLength = maxInputLength + maxNewTokens; SizeType32 constexpr maxGeneratedTokensPerStep{1}; std::vector inputLengths(batchSize); std::iota(inputLengths.begin(), inputLengths.end(), 4); std::vector tiledInputLengths; for (int batchIdx = 0; batchIdx < inputLengths.size(); batchIdx++) { for (int beamId = 0; beamId < maxBeamWidth; beamId++) { tiledInputLengths.push_back(inputLengths.at(batchIdx)); } } std::vector generatedTokensPerSteps(batchSize); std::vector acceptedTokensPerStep(batchSize); for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx) { generatedTokensPerSteps[batchIdx] = maxGeneratedTokensPerStep; acceptedTokensPerStep[batchIdx] = generatedTokensPerSteps[batchIdx] - 1; } auto constexpr tokenId = 1; auto requests = prepareRequests(batchSize, maxNewTokens, inputLengths, generatedTokensPerSteps, acceptedTokensPerStep, tokenId, endId, padId, manager); // set up inputs and outputs auto inputs = prepareDecoderInputs(batchSize, maxBeamWidth, maxSeqLength, vocabSizePadded, dataType, samplingConfigs, generatedTokensPerSteps, computeLogProbs, manager); auto outputs = prepareDecoderOutputs(batchSize, maxBeamWidth, maxSeqLength, tiledInputLengths, manager); // We set maxAttentionWindow = maxSeqLength, but it can be smaller than maxSeqLength (cyclic kv cache). auto const maxAttentionWindow = maxSeqLength; SizeType32 const sinkTokenLength{0}; auto const decodingMode = maxBeamWidth == 1 ? tle::DecodingMode::TopKTopP() : tle::DecodingMode::BeamSearch(); // set up decoder auto decoder = GptDecoderBatched(vocabSize, vocabSizePadded, streamPtr, modelConfig.getSpeculativeDecodingMode(), dataType); decoder.setup(decodingMode, batchSize, maxBeamWidth, maxAttentionWindow, sinkTokenLength, maxSeqLength, maxGeneratedTokensPerStep, dataType, modelConfig); std::vector seqSlots; std::vector decoderRequests; for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx) { seqSlots.push_back(batchIdx); } decoder.newRequests(seqSlots, requests, samplingConfigs); cudaDeviceSynchronize(); auto expectedLengths = tiledInputLengths; checkSequenceLengths(*outputs.sequenceLengths, expectedLengths, manager); auto const& finished = decoder.getFinished(); EXPECT_EQ(finished.size(), batchSize); EXPECT_THAT(finished, ::testing::Each(false)); verifyResults(manager, decoder, samplingConfigs, inputLengths, expectedLengths, batchSize, maxBeamWidth, maxSeqLength, tokenId, padId); // run decoder for 1 step decoder.forward(outputs, inputs); advanceSequenceLengths(expectedLengths, acceptedTokensPerStep, samplingConfigs, batchSize, maxBeamWidth); checkSequenceLengths(*outputs.sequenceLengths, expectedLengths, manager); EXPECT_THAT(decoder.getFinished(), ::testing::Each(false)); verifyResults(manager, decoder, samplingConfigs, inputLengths, expectedLengths, batchSize, maxBeamWidth, maxSeqLength, tokenId, padId); // run decoder for 1 step decoder.forward(outputs, inputs); advanceSequenceLengths(expectedLengths, acceptedTokensPerStep, samplingConfigs, batchSize, maxBeamWidth); checkSequenceLengths(*outputs.sequenceLengths, expectedLengths, manager); EXPECT_THAT(decoder.getFinished(), ::testing::Each(true)); verifyResults(manager, decoder, samplingConfigs, inputLengths, expectedLengths, batchSize, maxBeamWidth, maxSeqLength, tokenId, padId); EXPECT_NO_THROW(decoder.forward(outputs, inputs)); checkSequenceLengths(*outputs.sequenceLengths, expectedLengths, manager); std::vector singleConfig = {samplingConfigs[0]}; decoder.newRequests({0}, {requests[0]}, singleConfig); EXPECT_FALSE(decoder.getFinished()[0]); } void testDecoderWavefront(nvinfer1::DataType const dtype, std::vector& samplingConfigs, SizeType32 maxBeamWidth, bool computeLogProbs) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); SizeType32 constexpr tensorParallelism{1}; SizeType32 constexpr pipelineParallelism{1}; SizeType32 constexpr localRank{0}; WorldConfig const worldConfig{tensorParallelism, pipelineParallelism, localRank}; SizeType32 constexpr vocabSize{51200}; SizeType32 constexpr nbAttentionLayers{2}; SizeType32 constexpr nbRnnLayers{0}; SizeType32 constexpr nbHeads{16}; SizeType32 constexpr hiddenSize{1024}; ModelConfig modelConfig{ vocabSize, nbAttentionLayers + nbRnnLayers, nbAttentionLayers, nbRnnLayers, nbHeads, hiddenSize, dtype}; modelConfig.useGptAttentionPlugin(false); auto streamPtr = std::make_shared(); BufferManager manager(streamPtr); TokenIdType constexpr endId{50257}; TokenIdType constexpr padId{50257}; auto const dataType = modelConfig.getDataType(); auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize()); auto const batchSize = static_cast(samplingConfigs.size()); SizeType32 constexpr maxInputLength{8}; SizeType32 constexpr maxNewTokens{8}; auto constexpr maxSeqLength = maxInputLength + maxNewTokens; SizeType32 constexpr maxGeneratedTokensPerStep{1}; std::vector inputLengths(batchSize); std::iota(inputLengths.begin(), inputLengths.end(), 4); std::vector tiledInputLengths; for (int batchIdx = 0; batchIdx < inputLengths.size(); batchIdx++) { for (int beamId = 0; beamId < maxBeamWidth; beamId++) { tiledInputLengths.push_back(inputLengths.at(batchIdx)); } } std::vector generatedTokensPerSteps(batchSize); std::vector acceptedTokensPerStep(batchSize); for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx) { generatedTokensPerSteps[batchIdx] = maxGeneratedTokensPerStep; acceptedTokensPerStep[batchIdx] = generatedTokensPerSteps[batchIdx] - 1; } auto constexpr tokenId = 1; auto requests = prepareRequests(batchSize, maxNewTokens, inputLengths, generatedTokensPerSteps, acceptedTokensPerStep, tokenId, endId, padId, manager); // set up inputs and outputs auto inputs = prepareDecoderInputs(batchSize, maxBeamWidth, maxSeqLength, vocabSizePadded, dataType, samplingConfigs, generatedTokensPerSteps, computeLogProbs, manager); auto outputs = prepareDecoderOutputs(batchSize, maxBeamWidth, maxSeqLength, tiledInputLengths, manager); // We set maxAttentionWindow = maxSeqLength, but it can be smaller than maxSeqLength (cyclic kv cache). auto const maxAttentionWindow = maxSeqLength; SizeType32 const sinkTokenLength{0}; auto const decodingMode = maxBeamWidth == 1 ? tle::DecodingMode::TopKTopP() : tle::DecodingMode::BeamSearch(); // set up decoder auto decoder = GptDecoderBatched(vocabSize, vocabSizePadded, streamPtr, modelConfig.getSpeculativeDecodingMode(), dataType); decoder.setup(decodingMode, batchSize, maxBeamWidth, maxAttentionWindow, sinkTokenLength, maxSeqLength, maxGeneratedTokensPerStep, dataType, modelConfig); std::vector expectedSteps(batchSize, 0); auto expectedLengths = tiledInputLengths; auto const& finished = decoder.getFinished(); EXPECT_EQ(finished.size(), batchSize); std::vector expectedFinished(batchSize, true); for (auto batchIdx = 0; batchIdx < batchSize; ++batchIdx) { std::vector singleConfig = {samplingConfigs[batchIdx]}; decoder.newRequests({batchIdx}, {requests[batchIdx]}, singleConfig); decoder.forward(outputs, inputs); advanceSequenceLengths(expectedLengths, acceptedTokensPerStep, samplingConfigs, batchIdx + 1, maxBeamWidth); checkSequenceLengths(*outputs.sequenceLengths, expectedLengths, manager); for (auto bi = 0; bi <= batchIdx; ++bi) { auto firstBeamIndex = tc::flat_index2(bi, 0, maxBeamWidth); expectedFinished.at(bi) = expectedLengths.at(firstBeamIndex) - tiledInputLengths.at(firstBeamIndex) == maxNewTokens; } EXPECT_THAT(decoder.getFinished(), ::testing::ElementsAreArray(expectedFinished)); } auto finishedVec = decoder.getFinished(); while (!std::any_of(finishedVec.begin(), finishedVec.end(), [](bool finish) { return finish; })) { decoder.forward(outputs, inputs); finishedVec = decoder.getFinished(); advanceSequenceLengths(expectedLengths, acceptedTokensPerStep, samplingConfigs, batchSize, maxBeamWidth); checkSequenceLengths(*outputs.sequenceLengths, expectedLengths, manager); for (auto bi = 0; bi < batchSize; ++bi) { auto firstBeamIndex = tc::flat_index2(bi, 0, maxBeamWidth); expectedFinished.at(bi) = expectedLengths.at(firstBeamIndex) - tiledInputLengths.at(firstBeamIndex) == maxNewTokens; } EXPECT_THAT(finishedVec, ::testing::ElementsAreArray(expectedFinished)); } verifyResults(manager, decoder, samplingConfigs, inputLengths, expectedLengths, batchSize, maxBeamWidth, maxSeqLength, tokenId, padId); } void testDecoderDraft(nvinfer1::DataType const dtype, std::vector& samplingConfigs, SizeType32 maxBeamWidth, std::vector const& generatedTokensPerSteps, std::vector const& acceptedTokensPerStep, SizeType32 maxGeneratedTokensPerStep) { TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__); TLLM_CHECK(maxBeamWidth == 1); SizeType32 constexpr tensorParallelism{1}; SizeType32 constexpr pipelineParallelism{1}; SizeType32 constexpr localRank{0}; WorldConfig const worldConfig{tensorParallelism, pipelineParallelism, localRank}; SizeType32 constexpr vocabSize{51200}; SizeType32 constexpr nbAttentionLayers{2}; SizeType32 constexpr nbRnnLayers{0}; SizeType32 constexpr nbHeads{16}; SizeType32 constexpr hiddenSize{1024}; ModelConfig modelConfig{ vocabSize, nbAttentionLayers + nbRnnLayers, nbAttentionLayers, nbRnnLayers, nbHeads, hiddenSize, dtype}; modelConfig.useGptAttentionPlugin(false); modelConfig.setSpeculativeDecodingMode(SpeculativeDecodingMode::DraftTokensExternal()); auto streamPtr = std::make_shared(); BufferManager manager(streamPtr); TokenIdType constexpr endId{50257}; TokenIdType constexpr padId{50257}; auto const dataType = modelConfig.getDataType(); auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize()); auto const batchSize = static_cast(samplingConfigs.size()); SizeType32 constexpr maxInputLength{8}; SizeType32 const maxNewTokens{4}; auto const maxSeqLength = maxInputLength + maxNewTokens; std::vector inputLengths(batchSize); std::iota(inputLengths.begin(), inputLengths.end(), 4); std::vector tiledInputLengths; for (int batchIdx = 0; batchIdx < inputLengths.size(); batchIdx++) { for (int beamId = 0; beamId < maxBeamWidth; beamId++) { tiledInputLengths.push_back(inputLengths.at(batchIdx)); } } std::vector advancedTokensPerStep{generatedTokensPerSteps}; std::for_each(advancedTokensPerStep.begin(), advancedTokensPerStep.end(), [](auto& x) { x -= 1; }); auto constexpr tokenId = 1; auto requests = prepareRequests(batchSize, maxNewTokens, inputLengths, generatedTokensPerSteps, acceptedTokensPerStep, tokenId, endId, padId, manager); // set up inputs and outputs auto inputs = prepareDecoderInputs(batchSize, maxBeamWidth, maxSeqLength, vocabSizePadded, dataType, samplingConfigs, generatedTokensPerSteps, false, manager); auto outputs = prepareDecoderOutputs(batchSize, maxBeamWidth, maxSeqLength, tiledInputLengths, manager); // We set maxAttentionWindow = maxSeqLength, but it can be smaller than maxSeqLength (cyclic kv cache). auto const maxAttentionWindow = maxSeqLength; SizeType32 const sinkTokenLength{0}; auto const decodingMode = tle::DecodingMode::ExternalDraftTokens(); // only supports bw=1 // set up decoder auto decoder = GptDecoderBatched(vocabSize, vocabSizePadded, streamPtr, modelConfig.getSpeculativeDecodingMode(), dataType); decoder.setup(decodingMode, batchSize, maxBeamWidth, maxAttentionWindow, sinkTokenLength, maxSeqLength, maxGeneratedTokensPerStep, dataType, modelConfig); std::vector seqSlots(batchSize); std::iota(seqSlots.begin(), seqSlots.end(), 0); decoder.newRequests(seqSlots, requests, samplingConfigs); cudaDeviceSynchronize(); auto expectedLengths = tiledInputLengths; auto generatedLengths = tiledInputLengths; checkSequenceLengths(*outputs.sequenceLengths, expectedLengths, manager); auto const& finished = decoder.getFinished(); EXPECT_EQ(finished.size(), batchSize); EXPECT_THAT(finished, ::testing::Each(false)); verifyResults(manager, decoder, samplingConfigs, inputLengths, expectedLengths, batchSize, maxBeamWidth, maxSeqLength, tokenId, padId); // run decoder for 1 step decoder.forward(outputs, inputs); advanceSequenceLengths(expectedLengths, acceptedTokensPerStep, samplingConfigs, batchSize, maxBeamWidth); checkSequenceLengths(*outputs.sequenceLengths, expectedLengths, manager); EXPECT_THAT(decoder.getFinished(), ::testing::Each(false)); verifyResults(manager, decoder, samplingConfigs, inputLengths, expectedLengths, batchSize, maxBeamWidth, maxSeqLength, tokenId, padId); } } // namespace struct BeamConfig { SizeType32 maxBeamWidth; std::vector beamWidths; }; using ParamType = std::tuple; std::string generateTestName(testing::TestParamInfo const& info) { std::string name{std::get<0>(info.param) == nvinfer1::DataType::kFLOAT ? "Float" : "Half"}; BeamConfig const beamConfig = std::get<1>(info.param); name.append("MaxBeamWidth" + std::to_string(beamConfig.maxBeamWidth)); for (auto const beamWdith : beamConfig.beamWidths) { name.append("Bw" + std::to_string(beamWdith)); } bool const computeLogProbs{std::get<2>(info.param)}; if (computeLogProbs) { name.append("LogProbs"); } return name; } class ParamTest : public ::testing::TestWithParam { }; TEST_P(ParamTest, Test) { nvinfer1::DataType const dtype{std::get<0>(GetParam())}; BeamConfig const beamConfig{std::get<1>(GetParam())}; bool const computeLogProbs{std::get<2>(GetParam())}; std::vector samplingConfigs; for (auto const beamWidth : beamConfig.beamWidths) { samplingConfigs.emplace_back(beamWidth); } testDecoder(dtype, samplingConfigs, beamConfig.maxBeamWidth, computeLogProbs, true); } INSTANTIATE_TEST_SUITE_P(DecoderBwTest, ParamTest, testing::Combine(testing::Values(nvinfer1::DataType::kFLOAT, nvinfer1::DataType::kHALF), testing::Values(BeamConfig{1, {1, 1, 1}}, BeamConfig{3, {3, 3, 3, 3}}, BeamConfig{4, {4, 4, 4}}, BeamConfig{10, {10, 10, 10}}), testing::Values(false, true)), generateTestName); class ParamWavefrontTest : public ::testing::TestWithParam { }; TEST_P(ParamWavefrontTest, Test) { nvinfer1::DataType const dtype{std::get<0>(GetParam())}; BeamConfig const beamConfig{std::get<1>(GetParam())}; bool const computeLogProbs{std::get<2>(GetParam())}; bool const normalizeLogProbs{true}; std::vector samplingConfigs; for (auto const beamWidth : beamConfig.beamWidths) { samplingConfigs.emplace_back(beamWidth); } testDecoderWavefront(dtype, samplingConfigs, beamConfig.maxBeamWidth, computeLogProbs); } INSTANTIATE_TEST_SUITE_P(DecoderBwTest, ParamWavefrontTest, testing::Combine(testing::Values(nvinfer1::DataType::kFLOAT, nvinfer1::DataType::kHALF), testing::Values(BeamConfig{1, {1, 1, 1}}, BeamConfig{3, {3, 3, 3, 3}}, BeamConfig{4, {4, 4, 4}}, BeamConfig{10, {10, 10, 10}}), testing::Values(false, true)), generateTestName); struct DraftConfig { SizeType32 maxGeneratedTokensPerStep; std::vector generatedTokensPerSteps; std::vector acceptedTokensPerStep; }; using DraftTestParamType = std::tuple; class ParamDraftTest : public ::testing::TestWithParam { }; TEST_P(ParamDraftTest, Test) { nvinfer1::DataType const dtype{std::get<0>(GetParam())}; BeamConfig const beamConfig{std::get<1>(GetParam())}; DraftConfig const draftConfig{std::get<2>(GetParam())}; ASSERT_EQ(beamConfig.beamWidths.size(), draftConfig.acceptedTokensPerStep.size()); ASSERT_EQ(beamConfig.beamWidths.size(), draftConfig.generatedTokensPerSteps.size()); std::vector samplingConfigs; for (auto const beamWidth : beamConfig.beamWidths) { samplingConfigs.emplace_back(beamWidth); } testDecoderDraft(dtype, samplingConfigs, beamConfig.maxBeamWidth, draftConfig.generatedTokensPerSteps, draftConfig.acceptedTokensPerStep, draftConfig.maxGeneratedTokensPerStep); } INSTANTIATE_TEST_SUITE_P(DecoderTest, ParamDraftTest, testing::Combine(testing::Values(nvinfer1::DataType::kFLOAT, nvinfer1::DataType::kHALF), testing::Values(BeamConfig{1, {1, 1, 1}}), testing::Values( // DraftConfig{2, {1, 1, 1}, {0, 0, 0}}, DraftConfig{2, {2, 2, 2}, {1, 1, 1}}, DraftConfig{4, {1, 2, 3}, {0, 0, 1}} )), [](testing::TestParamInfo const& info) { std::string name{std::get<0>(info.param) == nvinfer1::DataType::kFLOAT ? "Float" : "Half"}; BeamConfig const beamConfig = std::get<1>(info.param); DraftConfig const draftConfig = std::get<2>(info.param); name.append("MaxBeamWidth" + std::to_string(beamConfig.maxBeamWidth)); auto const batchSize = beamConfig.beamWidths.size(); for (auto const beamWdith : beamConfig.beamWidths) { name.append("Bw" + std::to_string(beamWdith)); } name.append("PerStep" + std::to_string(draftConfig.maxGeneratedTokensPerStep)); for (std::size_t i = 0; i < batchSize; ++i) { auto const acc = draftConfig.acceptedTokensPerStep.at(i); auto const gen = draftConfig.generatedTokensPerSteps.at(i); name.append("Acc" + std::to_string(acc) + "of" + std::to_string(gen)); } return name; });