/* * Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/kernels/decodingCommon.h" #include "tensorrt_llm/kernels/speculativeDecoding/explicitDraftTokensKernels.h" #include "tensorrt_llm/layers/defaultDecodingParams.h" #include "tensorrt_llm/runtime/common.h" #include "tensorrt_llm/thop/thUtils.h" #if ENABLE_BF16 #include #endif // ENABLE_BF16 #include #include #include namespace th = torch; namespace tr = tensorrt_llm::runtime; namespace tk = tensorrt_llm::kernels; namespace tksd = tensorrt_llm::kernels::speculative_decoding; namespace torch_ext { namespace { // Must be similar to ExplicitDraftTokensLayer::setup void initializeDeviceCurandStates( int64_t batchSize, th::Tensor& curandState, th::optional& randomSeeds, cudaStream_t stream) { auto* curandStatePtr = get_ptr(curandState); tr::SizeType32* batchSlotsPtr = nullptr; if (randomSeeds.has_value()) { if (batchSize > 1 && randomSeeds->size(0) == 1) { TLLM_CHECK_WITH_INFO(randomSeeds->device().is_cpu(), "Random seed tensor expected on host."); auto const randomSeed = get_val(randomSeeds.value(), 0); tk::invokeCurandInitialize(curandStatePtr, batchSlotsPtr, batchSize, randomSeed, stream); } else { TLLM_CHECK_WITH_INFO( randomSeeds->dim() == 1 && randomSeeds->size(0) == batchSize, "Random seed tensor size mismatch."); TLLM_CHECK_WITH_INFO(randomSeeds->device().is_cuda(), "Random seed tensor expected on device."); auto* randomSeedsPtr = get_ptr(randomSeeds.value()); tk::invokeCurandBatchInitialize(curandStatePtr, batchSlotsPtr, batchSize, randomSeedsPtr, stream); } } else { // Initialize curand states using the default seed 0. tk::invokeCurandInitialize( curandStatePtr, batchSlotsPtr, batchSize, tensorrt_llm::layers::DefaultDecodingParams::getSeed(), stream); } sync_check_cuda_error(stream); } } // namespace void prepareRandomTensors(th::Tensor& curandState, // [maxBatchSize, 48], uint8_t th::Tensor& randDataSample, // [maxBatchSize], dtype (float or half) th::Tensor& randDataValidation, // [maxBatchSize, maxNumPaths, maxPathDraftLength], dtype (float or half) th::optional randomSeeds, // [1] or [maxBatchSize], uint64_t int64_t const batchSize, // int64_t const numPaths, // int64_t const draftLength, // bool const initialize // ) { auto stream = at::cuda::getCurrentCUDAStream().stream(); auto const scalarType = randDataSample.scalar_type(); CHECK_TYPE(randDataValidation, scalarType); TLLM_CHECK_WITH_INFO( randDataSample.dim() == 1 && randDataSample.size(0) == batchSize, "Random sample tensor size mismatch."); TLLM_CHECK_WITH_INFO(randDataValidation.dim() == 3 && randDataValidation.size(0) == batchSize && randDataValidation.size(1) == numPaths && randDataValidation.size(2) == draftLength, "Random validation tensor size mismatch."); TLLM_CHECK_WITH_INFO( curandState.dim() == 2 && curandState.size(0) == batchSize && curandState.size(1) == sizeof(curandState_t), "Curand state tensor shpe mismatch." "(got (%lu, %lu), need (%lu, %lu)).", curandState.size(0), curandState.size(1), batchSize, sizeof(curandState_t)); if (initialize) { initializeDeviceCurandStates(batchSize, curandState, randomSeeds, stream); } switch (scalarType) { case at::ScalarType::Float: { tksd::FillRandDataExplicitDraftTokensParams params; params.batchSize = static_cast(batchSize); params.numPaths = static_cast(numPaths); params.draftLength = static_cast(draftLength); params.randDataSample = get_ptr(randDataSample); params.randDataVerification = get_ptr(randDataValidation); params.curandState = get_ptr(curandState); params.batchSlots = nullptr; params.skipVerification = initialize; tksd::invokeFillRandData(params, stream); } break; case at::ScalarType::Half: { tksd::FillRandDataExplicitDraftTokensParams params; params.batchSize = static_cast(batchSize); params.numPaths = static_cast(numPaths); params.draftLength = static_cast(draftLength); params.randDataSample = get_ptr(randDataSample); params.randDataVerification = get_ptr(randDataValidation); params.curandState = get_ptr(curandState); params.batchSlots = nullptr; params.skipVerification = initialize; tksd::invokeFillRandData(params, stream); } break; #ifdef ENABLE_BF16 case at::ScalarType::BFloat16: { tksd::FillRandDataExplicitDraftTokensParams<__nv_bfloat16> params; params.batchSize = static_cast(batchSize); params.numPaths = static_cast(numPaths); params.draftLength = static_cast(draftLength); params.randDataSample = get_ptr<__nv_bfloat16>(randDataSample); params.randDataVerification = get_ptr<__nv_bfloat16>(randDataValidation); params.curandState = get_ptr(curandState); params.batchSlots = nullptr; params.skipVerification = initialize; tksd::invokeFillRandData(params, stream); } break; #endif // ENABLE_BF16 default: throw std::runtime_error("Unsupported tensor type."); } sync_check_cuda_error(stream); } } // namespace torch_ext static auto redrafter_prepare_random_tensors = torch::RegisterOperators("tensorrt_llm::redrafter_prepare_random_tensors", &torch_ext::prepareRandomTensors);