### Generation with Quantization import logging import torch from tensorrt_llm import SamplingParams from tensorrt_llm._tensorrt_engine import LLM from tensorrt_llm.llmapi import CalibConfig, QuantAlgo, QuantConfig major, minor = torch.cuda.get_device_capability() enable_fp8 = major > 8 or (major == 8 and minor >= 9) enable_nvfp4 = major >= 10 quant_and_calib_configs = [] if not enable_nvfp4: # Example 1: Specify int4 AWQ quantization to QuantConfig. # We can skip specifying CalibConfig or leave a None as the default value. quant_and_calib_configs.append( (QuantConfig(quant_algo=QuantAlgo.W4A16_AWQ), None)) if enable_fp8: # Example 2: Specify FP8 quantization to QuantConfig. # We can create a CalibConfig to specify the calibration dataset and other details. # Note that the calibration dataset could be either HF dataset name or a path to local HF dataset. quant_and_calib_configs.append( (QuantConfig(quant_algo=QuantAlgo.FP8, kv_cache_quant_algo=QuantAlgo.FP8), CalibConfig(calib_dataset='cnn_dailymail', calib_batches=256, calib_max_seq_length=256))) else: logging.error( "FP8 quantization only works on post-ada GPUs. Skipped in the example.") if enable_nvfp4: # Example 3: Specify NVFP4 quantization to QuantConfig. quant_and_calib_configs.append( (QuantConfig(quant_algo=QuantAlgo.NVFP4, kv_cache_quant_algo=QuantAlgo.FP8), CalibConfig(calib_dataset='cnn_dailymail', calib_batches=256, calib_max_seq_length=256))) else: logging.error( "NVFP4 quantization only works on Blackwell. Skipped in the example.") def main(): for quant_config, calib_config in quant_and_calib_configs: # The built-in end-to-end quantization is triggered according to the passed quant_config. llm = LLM(model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", quant_config=quant_config, calib_config=calib_config) # Sample prompts. prompts = [ "Hello, my name is", "The capital of France is", "The future of AI is", ] # Create a sampling params. sampling_params = SamplingParams(temperature=0.8, top_p=0.95) for output in llm.generate(prompts, sampling_params): print( f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}" ) llm.shutdown() # Got output like # Prompt: 'Hello, my name is', Generated text: 'Jane Smith. I am a resident of the city. Can you tell me more about the public services provided in the area?' # Prompt: 'The capital of France is', Generated text: 'located in Paris, France. The population of Paris, France, is estimated to be 2 million. France is home to many famous artists, including Picasso' # Prompt: 'The future of AI is', Generated text: 'an open and collaborative project. The project is an ongoing effort, and we invite participation from members of the community.\n\nOur community is' if __name__ == '__main__': main()