import torch from ..._utils import str_dtype_to_torch def convert_hf_weights(hf_model, dtype, **kwargs): torch_dtype = str_dtype_to_torch(dtype) hf_state_dict = hf_model.state_dict() weights = {} # replace key name for key, value in hf_state_dict.items(): # Decoder Layers orig_key = key if "model.layers." in key: key = key.replace("model.layers.", "transformer.layers.") #Attention key = key.replace("self_attn.", "attention.") key = key.replace("Wqkv.weight", "qkv.weight") key = key.replace("qkv_proj.", "qkv.") #128k #MLP key = key.replace("mlp.fc1.", "mlp.fc.") key = key.replace("mlp.fc2.", "mlp.proj.") key = key.replace("mlp.gate_up_proj.", "mlp.fc.") key = key.replace("mlp.up_proj.", "mlp.gate.") #128k key = key.replace("mlp.down_proj.", "mlp.proj.") #128k key = key.replace("mlp.gate_proj.", "mlp.fc.") #128k key = key.replace("o_proj.", "dense.") #128k #Layer norm key = key.replace("post_attention_layernorm.", "post_layernorm.") #128k # Embedding key = key.replace("model.embed_tokens.weight", "transformer.vocab_embedding.weight") # Final Layer norm key = key.replace("model.final_layernorm.", "transformer.ln_f.") key = key.replace("model.norm.", "transformer.ln_f.") #128k if "mlp.gate_up_proj." in orig_key: #4k original_weights = value.contiguous().clone() half_split = original_weights.shape[0] // 2 first_half, second_half = original_weights[: half_split, :], original_weights[ half_split:, :] # Swap the halves value = torch.cat((second_half, first_half), dim=0) if "q_proj" in key: #128k q_param = value k_param = hf_state_dict[orig_key.replace("q_proj", "k_proj")] v_param = hf_state_dict[orig_key.replace("q_proj", "v_proj")] value = torch.cat([q_param, k_param, v_param], dim=0) key = key.replace("q_proj.weight", "qkv.weight") elif "k_proj" in key or "v_proj" in key: continue weights[key] = value.to(torch_dtype).cpu() return weights def convert_hf_config(hf_config, dtype, **kwargs): config = { 'architecture': "Phi3ForCausalLM", 'dtype': dtype, 'num_hidden_layers': hf_config.num_hidden_layers, 'num_attention_heads': hf_config.num_key_value_heads, 'rope_theta': hf_config.rope_theta, 'hidden_size': hf_config.hidden_size, 'intermediate_size': hf_config.intermediate_size, 'vocab_size': hf_config.vocab_size, 'max_position_embeddings': hf_config.max_position_embeddings, 'hidden_act': hf_config.hidden_act, 'share_embedding_table': False, 'layer_norm_eps': hf_config.rms_norm_eps, } if hf_config.max_position_embeddings >= 128000: config.update({ 'original_max_position_embeddings': hf_config.original_max_position_embeddings, 'longrope_scaling_short_factors': hf_config.rope_scaling["short_factor"], 'longrope_scaling_long_factors': hf_config.rope_scaling["long_factor"] }) if config["hidden_act"] == "silu": config["hidden_act"] = "swiglu" return config