/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/thop/fp8Op.h" #include "cutlass/numeric_types.h" #include "tensorrt_llm/common/cudaBf16Wrapper.h" #include "tensorrt_llm/common/cudaFp8Utils.h" #include "tensorrt_llm/thop/thUtils.h" #include #if defined(TORCH_VERSION_MAJOR) \ && ((TORCH_VERSION_MAJOR > 1) || ((TORCH_VERSION_MAJOR == 1) && (TORCH_VERSION_MINOR >= 9))) #define TORCH_IS_AT_LEAST_v190 #endif namespace torch_ext { using torch::Tensor; using at::cuda::CUDAStream; using namespace tensorrt_llm::common; void e4m3_dynamic_quantize( Tensor& input, Tensor& quantized_input, Tensor& scales, CUDAStream& stream, QuantizeMode& quantize_mode) { auto quantized_input_ptr = get_ptr<__nv_fp8_e4m3>(quantized_input); if (input.scalar_type() == at::ScalarType::Float) { invokeComputeScalesAndQuantizeMatrix(quantized_input_ptr, get_ptr(scales), get_ptr(input), input.numel(), input.size(-1), quantize_mode, stream); } else if (input.scalar_type() == at::ScalarType::Half) { invokeComputeScalesAndQuantizeMatrix(quantized_input_ptr, get_ptr(scales), get_ptr(input), input.numel(), input.size(-1), quantize_mode, stream); } #ifdef ENABLE_BF16 else if (input.scalar_type() == at::ScalarType::BFloat16) { invokeComputeScalesAndQuantizeMatrix(quantized_input_ptr, get_ptr<__nv_bfloat16>(scales), get_ptr<__nv_bfloat16 const>(input), input.numel(), input.size(-1), quantize_mode, stream); } #endif else { TORCH_CHECK(false, "Invalid datatype. input must be BF16/FP16/FP32"); } } void e4m3_static_quantize( Tensor& input, Tensor& quantized_input, Tensor& scales, CUDAStream& stream, QuantizeMode& quantize_mode) { auto quantized_input_ptr = get_ptr<__nv_fp8_e4m3>(quantized_input); if (input.scalar_type() == at::ScalarType::Float) { invokeQuantizeMatrix(quantized_input_ptr, get_ptr(scales), get_ptr(input), input.numel(), input.size(-1), quantize_mode, stream); } else if (input.scalar_type() == at::ScalarType::Half) { invokeQuantizeMatrix(quantized_input_ptr, get_ptr(scales), get_ptr(input), input.numel(), input.size(-1), quantize_mode, stream); } #ifdef ENABLE_BF16 else if (input.scalar_type() == at::ScalarType::BFloat16) { invokeQuantizeMatrix(quantized_input_ptr, get_ptr(scales), get_ptr<__nv_bfloat16 const>(input), input.numel(), input.size(-1), quantize_mode, stream); } #endif else { TORCH_CHECK(false, "Invalid datatype. input must be BF16/FP16/FP32"); } } std::tuple e4m3_quantize_helper(Tensor input, at::optional scales, QuantizeMode quantize_mode) { CHECK_CONTIGUOUS(input); CHECK_TH_CUDA(input); TORCH_CHECK(input.numel() != 0, "input should not be empty tensor"); TORCH_CHECK(input.dim() >= 2 && (quantize_mode != QuantizeMode::PER_CHANNEL || input.dim() == 2), "Invalid dim. The dim of input should be greater than or equal to 2"); auto _st = input.scalar_type(); TORCH_CHECK(_st == torch::kFloat32 || _st == torch::kFloat16 || _st == torch::kBFloat16, "Invalid datatype. input must be FP16 or BF16 or FP32"); Tensor quantized_input = torch::empty(input.sizes(), torch::dtype(torch::kFloat8_e4m3fn).device(torch::kCUDA).requires_grad(false)); Tensor scales_; auto stream = at::cuda::getCurrentCUDAStream(input.get_device()); if (scales.has_value()) { // static quantization will use float scales by default. scales_ = scales.value(); CHECK_TH_CUDA(scales_); CHECK_TYPE(scales_, torch::kFloat32); e4m3_static_quantize(input, quantized_input, scales_, stream, quantize_mode); } else { std::vector scale_shape; if (quantize_mode == QuantizeMode::PER_TOKEN) { for (int i = 0; i < input.dim() - 1; i++) scale_shape.push_back(input.size(i)); scale_shape.push_back(1); } else if (quantize_mode == QuantizeMode::PER_CHANNEL) { for (int i = 0; i < input.dim() - 2; i++) scale_shape.push_back(input.size(i)); scale_shape.push_back(1); scale_shape.push_back(input.size(-1)); } else // must be PER_TENSOR { scale_shape.assign(input.dim(), 1); } scales_ = torch::empty(scale_shape, torch::dtype(input.dtype()).device(torch::kCUDA).requires_grad(false)); e4m3_dynamic_quantize(input, quantized_input, scales_, stream, quantize_mode); } return {quantized_input, scales_}; } Tensor e4m3_dequantize_helper(Tensor input, Tensor scales, QuantizeMode quantize_mode) { CHECK_CONTIGUOUS(input); CHECK_TH_CUDA(input); CHECK_TH_CUDA(scales); TORCH_CHECK(input.numel() != 0, "input should not be empty tensor"); TORCH_CHECK(input.dim() >= 2 && (quantize_mode != QuantizeMode::PER_CHANNEL || input.dim() == 2), "Invalid dim. The dim of input should be greater than or equal to 2"); TORCH_CHECK(input.scalar_type() == torch::kFloat8_e4m3fn, "Invalid datatype. input must be Int8 (Fp8)"); std::vector dequantized_input_shape; for (int i = 0; i < input.dim(); i++) dequantized_input_shape.push_back(input.size(i)); TORCH_CHECK(scales.dim() == input.dim()); if (quantize_mode == QuantizeMode::PER_TOKEN) { for (int i = 0; i < input.dim() - 1; i++) TORCH_CHECK(scales.size(i) == input.size(i)); TORCH_CHECK(scales.size(-1) == 1) } else if (quantize_mode == QuantizeMode::PER_CHANNEL) { for (int i = 0; i < input.dim() - 2; i++) TORCH_CHECK(scales.size(i) == input.size(i)); TORCH_CHECK(scales.size(-2) == 1); TORCH_CHECK(scales.size(-1) == input.size(-1)); } else { for (int i = 0; i < input.dim(); i++) TORCH_CHECK(scales.size(i) == 1); } Tensor dequantized_input = torch::empty(dequantized_input_shape, torch::dtype(scales.dtype()).device(torch::kCUDA).requires_grad(false)); auto input_ptr = get_ptr<__nv_fp8_e4m3>(input); auto stream = at::cuda::getCurrentCUDAStream(input.get_device()); if (scales.scalar_type() == at::ScalarType::Float) { invokeDequantizeMatrix(get_ptr(dequantized_input), get_ptr(scales), input_ptr, input.numel(), input.size(-1), quantize_mode, stream); } else if (scales.scalar_type() == at::ScalarType::Half) { invokeDequantizeMatrix(get_ptr(dequantized_input), get_ptr(scales), input_ptr, input.numel(), input.size(-1), quantize_mode, stream); } #ifdef ENABLE_BF16 else if (scales.scalar_type() == at::ScalarType::BFloat16) { invokeDequantizeMatrix(get_ptr<__nv_bfloat16>(dequantized_input), get_ptr<__nv_bfloat16>(scales), input_ptr, input.numel(), input.size(-1), quantize_mode, stream); } #endif else { TORCH_CHECK(false, "Invalid datatype. input must be BF16/FP16/FP32"); } return dequantized_input; } inline uint8_t float_to_ue8m0(float value) { if (value == 0.0f) { return 0x00; } constexpr uint32_t FP32_MANTISSA_BITS = 23; uint32_t val_u32 = *reinterpret_cast(&value); uint8_t exponent = (val_u32 >> FP32_MANTISSA_BITS); uint32_t mantissa = val_u32 & 0x7FFFFF; // Round up exponent and deal with satfinite. if ((mantissa > 0 && exponent != 0xFE) && !(exponent == 0 && mantissa <= 0x400000)) { ++exponent; } return exponent; } // Used in tests to quantize mxe4m3 tensors on host. std::tuple quantize_mxe4m3_host(Tensor x_fp32, bool is_sf_swizzled_layout = true) { int32_t const sf_vec_size = 32; CHECK_CPU_INPUT(x_fp32, torch::kFloat32); auto data_shape = x_fp32.sizes(); TORCH_CHECK(data_shape.size() == 2, "x_fp32 should be 2D tensor."); int num_tokens = data_shape[0]; int hidden_dim = data_shape[1]; int groups_per_hidden_dim = hidden_dim / sf_vec_size; Tensor fp8_tensor = at::detail::empty_cpu( {num_tokens, hidden_dim}, at::ScalarType::Byte, /* pinned */ true, at::MemoryFormat::Contiguous); int64_t sf_size = is_sf_swizzled_layout ? tensorrt_llm::computeSwizzledLayoutSFSize(num_tokens, hidden_dim / sf_vec_size) : tensorrt_llm::computeLinearLayoutSFSize(num_tokens, hidden_dim / sf_vec_size); Tensor scale_tensor = at::detail::empty_cpu({sf_size}, SF_DTYPE, /* pinned */ true, at::MemoryFormat::Contiguous); tensorrt_llm::QuantizationSFLayout layout = is_sf_swizzled_layout ? tensorrt_llm::QuantizationSFLayout::SWIZZLED : tensorrt_llm::QuantizationSFLayout::LINEAR; for (size_t ti = 0; ti < static_cast(data_shape[0]); ++ti) { for (int group = 0; group < groups_per_hidden_dim; ++group) { float* fp32_ptr = x_fp32.data_ptr() + ti * hidden_dim + group * sf_vec_size; uint8_t* fp8_ptr = fp8_tensor.data_ptr() + ti * hidden_dim + group * sf_vec_size; uint8_t* scale_ue8m08sf_ptr = scale_tensor.data_ptr(); float local_amax = 0.0f; for (int ki = 0; ki < sf_vec_size; ++ki) { local_amax = std::max(std::abs(fp32_ptr[ki]), local_amax); } local_amax *= (1.f / 448.0f); uint8_t scale_ue8m0 = float_to_ue8m0(local_amax); auto const inv_scale = (scale_ue8m0 == 0) ? 1 : exp2f(127 - static_cast(scale_ue8m0)); scale_ue8m08sf_ptr[computeSFIndex(ti, group, data_shape[0], groups_per_hidden_dim, layout)] = scale_ue8m0; for (int ki = 0; ki < sf_vec_size; ++ki) { float const scaled_fp32_value = fp32_ptr[ki] * inv_scale; auto fp8_value = cutlass::float_e4m3_t{scaled_fp32_value}; fp8_ptr[ki] = *reinterpret_cast(&fp8_value); } } } return std::make_tuple(fp8_tensor, scale_tensor); } // Used in tests to dequantize mxe4m3 tensors on host. Tensor dequantize_mxe4m3_host(Tensor value_e4m3, Tensor scale_ue8m08sf, bool is_sf_swizzled_layout = true) { int32_t const sf_vec_size = 32; CHECK_CPU_INPUT(value_e4m3, at::ScalarType::Byte); CHECK_CPU_INPUT(scale_ue8m08sf, SF_DTYPE); auto data_shape = value_e4m3.sizes(); auto scale_shape = scale_ue8m08sf.sizes(); TORCH_CHECK(data_shape.size() == 2, "value_e4m3 should be 2D tensor."); TORCH_CHECK(scale_shape.size() == 1, "scale_ue8m08sf should be 1D tensor."); Tensor float_tensor = at::detail::empty_cpu( {data_shape[0], data_shape[1]}, at::ScalarType::Float, /* pinned */ true, at::MemoryFormat::Contiguous); int hidden_dim = data_shape[1]; int groups_per_hidden_dim = hidden_dim / sf_vec_size; tensorrt_llm::QuantizationSFLayout layout = is_sf_swizzled_layout ? tensorrt_llm::QuantizationSFLayout::SWIZZLED : tensorrt_llm::QuantizationSFLayout::LINEAR; for (size_t ti = 0; ti < static_cast(data_shape[0]); ++ti) { for (int group = 0; group < groups_per_hidden_dim; ++group) { float* float_ptr = float_tensor.data_ptr() + ti * hidden_dim + group * sf_vec_size; uint8_t* fp8_ptr = value_e4m3.data_ptr() + ti * hidden_dim + group * sf_vec_size; uint8_t* scale_ue8m08sf_ptr = scale_ue8m08sf.data_ptr(); uint8_t fp8_scale = scale_ue8m08sf_ptr[computeSFIndex(ti, group, data_shape[0], groups_per_hidden_dim, layout)]; float scale_float; uint32_t scale_float_u32 = uint32_t(fp8_scale) << 23; memcpy(&scale_float, &scale_float_u32, sizeof(scale_float)); for (int ki = 0; ki < sf_vec_size; ++ki) { uint8_t fp8_u8_repr = fp8_ptr[ki]; auto fp32 = static_cast(*reinterpret_cast(&fp8_u8_repr)); float value = fp32 * scale_float; float_ptr[ki] = value; } } } return float_tensor; } std::tuple symmetric_quantize_weight(Tensor weight) { return e4m3_quantize_helper(weight, at::nullopt, QuantizeMode::PER_CHANNEL); } std::tuple symmetric_quantize_activation(Tensor activation) { return e4m3_quantize_helper(activation, at::nullopt, QuantizeMode::PER_TOKEN); } std::tuple symmetric_quantize_per_tensor(Tensor input) { return e4m3_quantize_helper(input, at::nullopt, QuantizeMode::PER_TENSOR); } std::tuple symmetric_static_quantize_weight(Tensor weight, Tensor scales) { return e4m3_quantize_helper(weight, scales, QuantizeMode::PER_CHANNEL); } std::tuple symmetric_static_quantize_activation(Tensor activation, Tensor scales) { return e4m3_quantize_helper(activation, scales, QuantizeMode::PER_TOKEN); } std::tuple symmetric_static_quantize_per_tensor(Tensor input, Tensor scales) { return e4m3_quantize_helper(input, scales, QuantizeMode::PER_TENSOR); } Tensor symmetric_dequantize_weight(Tensor weight, Tensor scales) { return e4m3_dequantize_helper(weight, scales, QuantizeMode::PER_CHANNEL); } Tensor symmetric_dequantize_activation(Tensor activation, Tensor scales) { return e4m3_dequantize_helper(activation, scales, QuantizeMode::PER_TOKEN); } Tensor symmetric_dequantize_per_tensor(Tensor input, Tensor scales) { return e4m3_dequantize_helper(input, scales, QuantizeMode::PER_TENSOR); } } // namespace torch_ext // Utility methods that may be useful for preprocessing weights in torch. TORCH_LIBRARY_FRAGMENT(tensorrt_llm, m) { m.def("quantize_e4m3_weight(Tensor weight) -> (Tensor, Tensor)"); m.def("quantize_e4m3_activation(Tensor activation) -> (Tensor, Tensor)"); m.def("quantize_e4m3_per_tensor(Tensor input) -> (Tensor, Tensor)"); m.def("static_quantize_e4m3_weight(Tensor weight, Tensor scales) -> (Tensor, Tensor)"); m.def("static_quantize_e4m3_activation(Tensor activation, Tensor scales) -> (Tensor, Tensor)"); m.def("static_quantize_e4m3_per_tensor(Tensor input, Tensor scales) -> (Tensor, Tensor)"); m.def("dequantize_e4m3_weight(Tensor weight, Tensor scales) -> Tensor"); m.def("dequantize_e4m3_activation(Tensor activation, Tensor scales) -> Tensor"); m.def("dequantize_e4m3_per_tensor(Tensor input, Tensor scales) -> Tensor"); } TORCH_LIBRARY_IMPL(tensorrt_llm, CUDA, m) { m.impl("quantize_e4m3_weight", &torch_ext::symmetric_quantize_weight); m.impl("quantize_e4m3_activation", &torch_ext::symmetric_quantize_activation); m.impl("quantize_e4m3_per_tensor", &torch_ext::symmetric_quantize_per_tensor); m.impl("static_quantize_e4m3_weight", &torch_ext::symmetric_static_quantize_weight); m.impl("static_quantize_e4m3_activation", &torch_ext::symmetric_static_quantize_activation); m.impl("static_quantize_e4m3_per_tensor", &torch_ext::symmetric_static_quantize_per_tensor); m.impl("dequantize_e4m3_weight", &torch_ext::symmetric_dequantize_weight); m.impl("dequantize_e4m3_activation", &torch_ext::symmetric_dequantize_activation); m.impl("dequantize_e4m3_per_tensor", &torch_ext::symmetric_dequantize_per_tensor); } static auto dequantize_mxe4m3_host = torch::RegisterOperators("tensorrt_llm::dequantize_mxe4m3_host", &torch_ext::dequantize_mxe4m3_host); static auto quantize_mxe4m3_host = torch::RegisterOperators("tensorrt_llm::quantize_mxe4m3_host", &torch_ext::quantize_mxe4m3_host);