/* * Copyright (c) 2019-2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mlaChunkedPrefill.cuh" #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/common/cudaTypeUtils.cuh" #include "tensorrt_llm/common/mathUtils.h" #include #include #include namespace { template struct MergeSoftmaxTraits { static constexpr int kQKNopeSize = 128; static constexpr int kHeadSize = kQKNopeSize; static constexpr int kBytesPerElem = sizeof(T); static constexpr int kBytesPerLoad = 16; static constexpr int kElemPerThread = kBytesPerLoad / sizeof(T); static_assert((kHeadSize * kBytesPerElem) % kBytesPerLoad == 0, "kHeadSize * kBytesPerElem must be multiple of kBytesPerLoad (16Bytes)"); static constexpr int kVecPerHead = (kHeadSize * kBytesPerElem) / kBytesPerLoad; static constexpr int kTokenPerBlock = std::is_same_v ? 4 : 8; // for each block, we fetch 8 token for fp16, 4 tokens for fp32. static constexpr int kNumThreads = kVecPerHead * kTokenPerBlock; union VecReader { cutlass::Array data; uint4 reader; static_assert( sizeof(uint4) == sizeof(cutlass::Array), "Size mismatch for MergeSoftmaxTraits"); }; }; template struct loadChunkedKVKernelTraits { static constexpr int kLoraSize = 512; static constexpr int kRopeSize = 64; static constexpr int kHeadSize = kLoraSize + kRopeSize; using VecT = uint4; static constexpr int kBytesPerElem = sizeof(T); static constexpr int kBytesPerLoad = 16; static constexpr int kElemPerLoad = kBytesPerLoad / kBytesPerElem; static_assert((kHeadSize * kBytesPerElem) % kBytesPerLoad == 0, "kHeadSize * kBytesPerElem must be multiple of kBytesPerLoad (16Bytes)"); static constexpr int kVecPerHead = (kHeadSize * kBytesPerElem) / kBytesPerLoad; static constexpr int kThreadPerHead = kVecPerHead; // for each head, we use kThreadPerHead threads to fetch all the // kv cache data, each thread read kv cache only once. static constexpr int kTokenPerBlock = std::is_same_v ? 4 : 8; // for each block, we fetch 8 token for fp16, 4 tokens for fp32. static constexpr int kBlockSize = kThreadPerHead * kTokenPerBlock; static constexpr int kKVThreadPerHead = (kLoraSize * kBytesPerElem) / kBytesPerLoad; }; template struct setChunkedKVKernelTraits { using VecT = uint4; static constexpr int kQKNopeSize = 128; static constexpr int kVHeadSize = 128; static_assert(kQKNopeSize == kVHeadSize); static constexpr int kRopeSize = 64; static constexpr int kHeadSize = kQKNopeSize + kRopeSize; static constexpr int kBytesPerElem = sizeof(T); static constexpr int kBytesPerLoad = 16; static constexpr int kElemPerLoad = kBytesPerLoad / kBytesPerElem; static_assert((kHeadSize * kBytesPerElem) % kBytesPerLoad == 0, "kHeadSize * kBytesPerElem must be multiple of kBytesPerLoad (16Bytes)"); static constexpr int kThreadPerHead = (kHeadSize * kBytesPerElem) / kBytesPerLoad; static constexpr int kKVThreadPerHead = (kQKNopeSize * kBytesPerElem) / kBytesPerLoad; static constexpr int kCpTokenPerBlock = 16; static constexpr int kBlockSize = kThreadPerHead * kCpTokenPerBlock; }; template inline __device__ void quantCopy( __nv_fp8_e4m3* dst_global_ptr, SrcType const* src_fragment_ptr, float const scale_val = 1.f) { using DstVecType = typename std::conditional::type; using SrcType2 = typename std::conditional::Type, float2>::type; static constexpr int COPY_SIZE = sizeof(DstVecType); static constexpr int TOTAL_COPY_SIZE = NUM * sizeof(__nv_fp8_e4m3); static constexpr int LOOP_NUM = TOTAL_COPY_SIZE / COPY_SIZE; static_assert(TOTAL_COPY_SIZE % COPY_SIZE == 0); static constexpr int CVT_NUM = COPY_SIZE / sizeof(__nv_fp8_e4m3) / 2; static_assert(COPY_SIZE % (sizeof(__nv_fp8_e4m3) * 2) == 0); DstVecType fragment; int offset = 0; #pragma unroll for (int i = 0; i < LOOP_NUM; ++i) { #pragma unroll for (int j = 0; j < CVT_NUM; ++j) { float2 val2 = tensorrt_llm::common::cuda_cast( reinterpret_cast(src_fragment_ptr)[j + offset]); val2.x *= scale_val; val2.y *= scale_val; reinterpret_cast<__nv_fp8x2_e4m3*>(&fragment)[j] = __nv_fp8x2_e4m3(val2); } reinterpret_cast(dst_global_ptr)[i] = fragment; offset += CVT_NUM; } } template inline __device__ void dequantCopy( DstType* dst_global_ptr, __nv_fp8_e4m3 const* src_fragment_ptr, float const scale_val = 1.f) { using DstVecType = uint4; using DstType2 = std::conditional_t::Type, float2>; static constexpr int COPY_SIZE = sizeof(DstVecType); static constexpr int TOTAL_COPY_SIZE = NUM * sizeof(DstType); static constexpr int LOOP_NUM = TOTAL_COPY_SIZE / COPY_SIZE; static_assert(TOTAL_COPY_SIZE % COPY_SIZE == 0); static constexpr int CVT_NUM = COPY_SIZE / sizeof(DstType) / 2; static_assert(COPY_SIZE % (sizeof(DstType) * 2) == 0); DstVecType fragment; int offset = 0; #pragma unroll for (int i = 0; i < LOOP_NUM; ++i) { #pragma unroll for (int j = 0; j < CVT_NUM; ++j) { float2 val2 = tensorrt_llm::common::cuda_cast( reinterpret_cast<__nv_fp8x2_e4m3 const*>(src_fragment_ptr)[j + offset]); val2.x *= scale_val; val2.y *= scale_val; reinterpret_cast(&fragment)[j] = tensorrt_llm::common::cuda_cast(val2); } reinterpret_cast(dst_global_ptr)[i] = fragment; offset += CVT_NUM; } } // merged_attn [q_total_len, H=128, D=128] (T) // merged_softmax_sum [q_total_len, H, 2] (float, max/sum) template __global__ void mergeAttnWithSoftmaxKernel(T* merged_attn, float2* merged_softmax_stats, T const* pre_attn, float2 const* pre_softmax_stats, T const* curr_attn, float2 const* curr_softmax_stats, int64_t const* cu_q_seq_len, int64_t const* merge_op, int const num_heads, int const head_size) { using KT = MergeSoftmaxTraits; int const batch_idx = static_cast(blockIdx.y); int const head_idx = static_cast(blockIdx.z); int64_t merge_op_val = merge_op[batch_idx]; if (merge_op_val == 0) { return; // skip this batch } size_t const head_dim_vec_idx = (threadIdx.x % KT::kVecPerHead); size_t const head_dim_idx = head_dim_vec_idx * KT::kElemPerThread; if (merge_op_val == 0) { return; // skip this batch } int const curr_q_len = static_cast(cu_q_seq_len[batch_idx + 1] - cu_q_seq_len[batch_idx]); int const global_q_offset = cu_q_seq_len[batch_idx]; for (int local_token_idx = (threadIdx.x / KT::kVecPerHead) + blockIdx.x * KT::kTokenPerBlock; local_token_idx < curr_q_len; local_token_idx += gridDim.x * KT::kTokenPerBlock) { // load softmax stat int const global_softmax_stats_offset = (global_q_offset + local_token_idx) * num_heads + head_idx; float2 curr_stats = curr_softmax_stats[global_softmax_stats_offset]; // hack, current softmax stats max is not multiplied by bmm1_scale // TODO: delete this line when trtllm gen kernel return the right max value. curr_stats.x *= 0.072168784; // 1 / sqrt(128 + 64), head_size is 128 for output, but for bmm1 is 192 float2 pre_stats = pre_softmax_stats[global_softmax_stats_offset]; // load attn typename KT::VecReader pre_attn_reader{}; typename KT::VecReader curr_attn_reader{}; typename KT::VecReader merged_attn_reader{}; int const global_attn_offset = (global_q_offset + local_token_idx) * num_heads * head_size + head_idx * head_size; pre_attn_reader.reader = *reinterpret_cast(pre_attn + global_attn_offset + head_dim_idx); curr_attn_reader.reader = *reinterpret_cast( curr_attn + global_attn_offset + head_dim_idx); // only copy curr attn and curr softmax sum if (merge_op_val == 2) { *reinterpret_cast(merged_attn + global_attn_offset + head_dim_idx) = curr_attn_reader.reader; if (head_dim_idx == 0) { merged_softmax_stats[global_softmax_stats_offset] = curr_stats; } } else { // merge attn and softmax stats float2 merged_stats; merged_stats.x = fmaxf(pre_stats.x, curr_stats.x); float pre_shift = std::exp(pre_stats.x - merged_stats.x); float curr_shift = std::exp(curr_stats.x - merged_stats.x); merged_stats.y = (pre_stats.y * pre_shift + curr_stats.y * curr_shift); for (int i = 0; i < KT::kElemPerThread; ++i) { merged_attn_reader.data[i] = (static_cast(pre_attn_reader.data[i]) * pre_stats.y * pre_shift + static_cast(curr_attn_reader.data[i]) * curr_stats.y * curr_shift) / merged_stats.y; } // write merged attn back to global memory *reinterpret_cast(merged_attn + global_attn_offset + head_dim_idx) = merged_attn_reader.reader; // write merged softmax stats back to global memory if (head_dim_idx == 0) { merged_softmax_stats[global_softmax_stats_offset] = merged_stats; } } } } // kv_output {total_chunk_token=b*chunk_size, h=1, d_lora} // k_pe_output {total_chunk_token, h=1, d_rope} template __global__ void loadChunkedKVCacheForMLAKernel(T* output_kv_ptr, T* output_k_pe_ptr, tensorrt_llm::kernels::KVBlockArray const kv_cache, int64_t const* cu_ctx_chunked_len, int chunked_size, int chunked_idx, float const* kv_scale_quant_orig_ptr) { static_assert(std::is_same_v || std::is_same_v, "TCache must be either the same type as T or __nv_fp8_e4m3"); using KT = loadChunkedKVKernelTraits; float const kv_scale_quant_orig = kv_scale_quant_orig_ptr ? kv_scale_quant_orig_ptr[0] : 1.0f; int const batch_idx = static_cast(blockIdx.y); [[maybe_unused]] int const head_idx = static_cast(blockIdx.z); // default 0 size_t const head_dim_vec_idx = (threadIdx.x % KT::kVecPerHead); size_t const head_dim_idx = head_dim_vec_idx * KT::kElemPerLoad; int64_t const real_chunked_size = cu_ctx_chunked_len[batch_idx + 1] - cu_ctx_chunked_len[batch_idx]; int64_t const global_st_offset = cu_ctx_chunked_len[batch_idx]; if (real_chunked_size <= 0) { return; // no kv cache for this batch } bool const is_valid_kv = head_dim_vec_idx < KT::kKVThreadPerHead; for (int local_token_idx = (threadIdx.x / KT::kThreadPerHead) + blockIdx.x * KT::kTokenPerBlock; local_token_idx < real_chunked_size; local_token_idx += gridDim.x * KT::kTokenPerBlock) { int token_idx_in_kv_cache = (chunked_idx * chunked_size) + local_token_idx; bool const valid_token = (local_token_idx < chunked_size); if (valid_token) { auto* kvSrc = reinterpret_cast(kv_cache.getKBlockPtr(batch_idx, token_idx_in_kv_cache)); // head_idx === 0 auto kvBlockIdx = kv_cache.getKVLocalIdx(token_idx_in_kv_cache, 0, KT::kVecPerHead, static_cast(head_dim_vec_idx)); auto ld_data = (reinterpret_cast(kvSrc))[kvBlockIdx]; if (is_valid_kv) { // kv_output {total_chunk_token, h=1, d} int const global_st_idx = global_st_offset * KT::kLoraSize + local_token_idx * KT::kLoraSize + head_dim_idx; if constexpr (std::is_same_v) { *reinterpret_cast(output_kv_ptr + global_st_idx) = ld_data; } else if constexpr (std::is_same_v) { dequantCopy(output_kv_ptr + global_st_idx, reinterpret_cast<__nv_fp8_e4m3 const*>(&ld_data), kv_scale_quant_orig); } } else { // k_pe_output {total_chunk_token, h=1, d_rope} int const global_st_idx = global_st_offset * KT::kRopeSize + local_token_idx * KT::kRopeSize + (head_dim_idx - KT::kLoraSize); if constexpr (std::is_same_v) { *reinterpret_cast(output_k_pe_ptr + global_st_idx) = ld_data; } else if constexpr (std::is_same_v) { dequantCopy(output_k_pe_ptr + global_st_idx, reinterpret_cast<__nv_fp8_e4m3 const*>(&ld_data), kv_scale_quant_orig); } } } } } // in the most of cases, chunk_size = max_seq_len // output_kv {B, 2, ceil(max_seq_len / kv_cache_tokens_per_block), h, kv_cache_tokens_per_block, d}, padding with // zero // kv {token_size = B*chunked_unit_size, 2, H=128, uncompressed_h=128}, k_pe {token_size = B*chunked_unit_size, h=1, // rope_h} // cu_seq_lens {batch + 1}, fake cu_seq_len, for chunked prefill is {0, chunk_size, chunk_size * 2 ....} template __global__ void setChunkedKVCacheForMLAKernel(T* output_kv, T const* kv, T const* k_pe, int const max_seq_len, int const num_heads, int uncompressed_head_size, int rope_size, int64_t const* cu_seq_lens, int kv_cache_tokens_per_block) { using KT = setChunkedKVKernelTraits; int const batch_idx = static_cast(blockIdx.y); int const head_idx = static_cast(blockIdx.z); int const head_dim_vec_idx = (threadIdx.x % KT::kThreadPerHead); int const head_dim_idx = head_dim_vec_idx * KT::kElemPerLoad; bool const is_valid_kv = head_dim_idx < KT::kQKNopeSize; int64_t const global_token_offset = cu_seq_lens[batch_idx]; int64_t const cache_kv_len = cu_seq_lens[batch_idx + 1] - cu_seq_lens[batch_idx]; int const kv_cache_block_num = (max_seq_len + kv_cache_tokens_per_block - 1) / kv_cache_tokens_per_block; int const kv_cache_block_size = num_heads * kv_cache_tokens_per_block * (uncompressed_head_size + rope_size); int64_t const offset_for_kv_in_mem_pool = kv_cache_block_num * kv_cache_block_size; int64_t const kv_offset = num_heads * uncompressed_head_size; size_t const seq_len_loop_end = cache_kv_len; for (int local_token_idx = (threadIdx.x / KT::kThreadPerHead) + blockIdx.x * KT::kCpTokenPerBlock; local_token_idx < seq_len_loop_end; local_token_idx += gridDim.x * KT::kCpTokenPerBlock) { if (local_token_idx >= cache_kv_len) { break; } if (is_valid_kv) { int64_t ld_kv_global_offset = int64_t(global_token_offset + local_token_idx) * 2 * num_heads * uncompressed_head_size + head_idx * uncompressed_head_size; int64_t ld_kv_local_offset = head_dim_vec_idx; auto k_data = (reinterpret_cast(kv + ld_kv_global_offset))[ld_kv_local_offset]; auto v_data = (reinterpret_cast( kv + kv_offset + ld_kv_global_offset))[ld_kv_local_offset]; int64_t st_k_global_offset = int64_t(batch_idx) * 2 * offset_for_kv_in_mem_pool + local_token_idx / kv_cache_tokens_per_block * kv_cache_block_size + head_idx * kv_cache_tokens_per_block * (uncompressed_head_size + rope_size) + (local_token_idx % kv_cache_tokens_per_block) * (uncompressed_head_size + rope_size); int64_t st_v_global_offset = st_k_global_offset + offset_for_kv_in_mem_pool; int64_t st_k_local_offset = head_dim_vec_idx; int64_t st_v_local_offset = head_dim_vec_idx; (reinterpret_cast(output_kv + st_k_global_offset))[st_k_local_offset] = k_data; (reinterpret_cast(output_kv + st_v_global_offset))[st_v_local_offset] = v_data; } else { // rope h = 1 int64_t ld_rope_global_offset = int64_t(global_token_offset + local_token_idx) * rope_size; int64_t ld_rope_local_offset = head_dim_vec_idx - KT::kKVThreadPerHead; auto rope_data = (reinterpret_cast(k_pe + ld_rope_global_offset))[ld_rope_local_offset]; int64_t st_rope_global_offset = int64_t(batch_idx) * 2 * offset_for_kv_in_mem_pool + local_token_idx / kv_cache_tokens_per_block * kv_cache_block_size + head_idx * kv_cache_tokens_per_block * (uncompressed_head_size + rope_size) + (local_token_idx % kv_cache_tokens_per_block) * (uncompressed_head_size + rope_size); int64_t st_rope_local_offset = head_dim_vec_idx; (reinterpret_cast(output_kv + st_rope_global_offset))[st_rope_local_offset] = rope_data; } } } } // namespace namespace tensorrt_llm { namespace kernels { // merged_attn [q_total_len, H=128, D=128] (T) // merged_softmax_sum [q_total_len, H, 2] (float), the first part is the max value for each // row of P = QK^T, the second part is the softmax sum // if merge_op[b] == 0, we just skip this batch, if merge_op[b] == 1, we merge the pre-attn and curr-attn, if // merge_op[b] // == 2, we only copy curr_attn and curr_softmax_sum to merged_attn and merged_softmax_sum template void invokeMergeAttnWithSoftmax(T* merged_attn, float* merged_softmax_stats, T const* pre_attn, float const* pre_softmax_stats, T const* curr_attn, float const* curr_softmax_stats, int const batch_size, int64_t const* cu_q_seq_len, int max_q_seq_len, int64_t const* merge_op, int const num_heads, int const head_size, cudaStream_t stream) { using KT = MergeSoftmaxTraits; TLLM_CHECK_WITH_INFO(head_size == KT::kHeadSize, "head dim should be equal to %d", KT::kHeadSize); dim3 grid(static_cast(tensorrt_llm::common::divUp(max_q_seq_len, KT::kTokenPerBlock)), batch_size, num_heads); dim3 block(KT::kNumThreads); mergeAttnWithSoftmaxKernel<<>>(merged_attn, reinterpret_cast(merged_softmax_stats), pre_attn, reinterpret_cast(pre_softmax_stats), curr_attn, reinterpret_cast(curr_softmax_stats), cu_q_seq_len, merge_op, num_heads, head_size); } // load single chunk kv from kv_cache for each request template void invokeMLALoadChunkedKV(T* output_kv_ptr, T* output_k_pe_ptr, KVBlockArray const& kv_cache, int const num_contexts, int64_t const* cu_ctx_chunked_len, int lora_size, int rope_size, int chunked_size, int chunked_idx, float const* kv_scale_quant_orig_ptr, cudaStream_t stream) { using KT = loadChunkedKVKernelTraits; TLLM_CHECK_WITH_INFO(lora_size + rope_size == KT::kHeadSize, "head dim should be equal to %d", KT::kHeadSize); TLLM_CHECK_WITH_INFO(lora_size == KT::kLoraSize, "lora dim should be equal to %d", KT::kLoraSize); TLLM_CHECK_WITH_INFO(rope_size == KT::kRopeSize, "rope dim should be equal to %d", KT::kRopeSize); // {chunked_unit_size / token_per_block, batch_size, head_num} dim3 grid(static_cast(tensorrt_llm::common::divUp(chunked_size, KT::kTokenPerBlock)), num_contexts, 1); loadChunkedKVCacheForMLAKernel<<>>(output_kv_ptr, output_k_pe_ptr, kv_cache, cu_ctx_chunked_len, chunked_size, chunked_idx, kv_scale_quant_orig_ptr); } // output_kv {B, 2, ceil(chunked_size / kv_cache_tokens_per_block), h, kv_cache_tokens_per_block, d}, padding with // zero // kv {total_token, 2, H, uncompressed_h=128} 0 for k and 1 for v, k_pe {total_token, h=1, rope_h} // input kv and k_pe can be cached tokens or uncached tokens template void invokeMLASetChunkedKV(T* output_kv, T const* kv, T const* k_pe, int const batch_size, int const max_seq_len, int const num_heads, int uncompressed_head_size, int rope_size, int64_t const* cu_seq_lens, int const kv_cache_tokens_per_block, cudaStream_t stream) { using KT = setChunkedKVKernelTraits; TLLM_CHECK_WITH_INFO( uncompressed_head_size + rope_size == KT::kHeadSize, "head dim should be equal to %d", KT::kHeadSize); TLLM_CHECK_WITH_INFO(kv_cache_tokens_per_block % KT::kCpTokenPerBlock == 0, "kv_cache_tokens_per_block should be multiple of %d", KT::kCpTokenPerBlock); dim3 grid(tensorrt_llm::common::divUp(max_seq_len, KT::kCpTokenPerBlock), batch_size, num_heads); setChunkedKVCacheForMLAKernel<<>>(output_kv, kv, k_pe, max_seq_len, num_heads, uncompressed_head_size, rope_size, cu_seq_lens, kv_cache_tokens_per_block); } #define INSTANTIATE_MLA_CHUNKED_PREFILL_KERNEL(T) \ template void invokeMergeAttnWithSoftmax(T * merged_attn, float* merged_softmax_stats, T const* pre_attn, \ float const* pre_softmax_stats, T const* curr_attn, float const* curr_softmax_stats, int const batch_size, \ int64_t const* cu_q_seq_len, int max_q_seq_len, int64_t const* merge_op, int const num_heads, \ int const head_size, cudaStream_t stream); \ template void invokeMLALoadChunkedKV(T * output_kv_ptr, T * output_k_pe_ptr, KVBlockArray const& kv_cache, \ int const num_contexts, int64_t const* cu_ctx_chunked_len, int lora_size, int rope_size, int chunked_size, \ int chunked_idx, float const* kv_scale_quant_orig_ptr, cudaStream_t stream); \ template void invokeMLALoadChunkedKV(T * output_kv_ptr, T * output_k_pe_ptr, \ KVBlockArray const& kv_cache, int const num_contexts, int64_t const* cu_ctx_chunked_len, int lora_size, \ int rope_size, int chunked_size, int chunked_idx, float const* kv_scale_quant_orig_ptr, cudaStream_t stream); \ template void invokeMLASetChunkedKV(T * output_kv, T const* kv, T const* k_pe, int const batch_size, \ int const max_seq_len, int const num_heads, int uncompressed_head_size, int rope_size, \ int64_t const* cu_seq_lens, int const kv_cache_tokens_per_block, cudaStream_t stream); INSTANTIATE_MLA_CHUNKED_PREFILL_KERNEL(half); INSTANTIATE_MLA_CHUNKED_PREFILL_KERNEL(float); INSTANTIATE_MLA_CHUNKED_PREFILL_KERNEL(__nv_bfloat16); } // namespace kernels } // namespace tensorrt_llm