/* * Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/kernels/kvCacheUtils.h" #include "tensorrt_llm/kernels/unfusedAttentionKernels.h" #include #include #include #include namespace tensorrt_llm { namespace kernels { enum class KvCacheDataType; struct MlaMetaParams { int32_t q_lora_rank = 0; int32_t kv_lora_rank = 0; int32_t qk_nope_head_dim = 0; int32_t qk_rope_head_dim = 0; int32_t v_head_dim = 0; int32_t predicted_tokens_per_seq = 1; int32_t num_layers = 0; auto data() const { return std::make_tuple(q_lora_rank, kv_lora_rank, qk_nope_head_dim, qk_rope_head_dim, v_head_dim, predicted_tokens_per_seq, num_layers); } }; template struct MlaParams { T const* latent_cache; // cKV + k_pe T* attention_input_buf; // [b, s, 3, h, d_h + r] void* quant_attention_input_buf; T* context_buf; T* q_pe; // [b, h, d_r], strided float2 const* cos_sin_cache; // [s, rope] int32_t batch_size; int32_t acc_q_len; int32_t head_num; // h void* workspace; int32_t const* cache_seq_lens; int* seqQOffset; uint32_t* fmha_tile_counter; int32_t max_input_seq_len; int* cu_q_seqlens; int* cu_kv_seqlens; int32_t q_pe_ld; int32_t q_pe_stride; MlaMetaParams meta; int const* block_ids_per_seq; KvCacheDataType cache_type; // Scales for mla quantization float* bmm1_scale; float* bmm2_scale; float const* quant_scale_o; float const* quant_scale_q; float const* quant_scale_kv; float const* dequant_scale_q; float const* dequant_scale_kv; float host_bmm1_scale; // for kv cache reuse/chunked context void* context_paged_kv_ptr = nullptr; void* context_kv_cache_block_offsets_ptr = nullptr; int32_t context_paged_kv_max_blocks_per_seq = 0; }; template void invokeMLARopeContext(MlaParams& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream); template void invokeMLARopeGeneration(MlaParams& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream); template void invokeMLALoadPagedKV(T* compressed_kv_ptr, T* k_pe_ptr, KVBlockArray& kv_cache, int const num_contexts, int64_t const* cu_ctx_cached_kv_lens, int const max_input_seq_len, int const lora_size, int const rope_size, float const* kv_scale_quant_orig_ptr, cudaStream_t stream); template void invokeMLASetPagedKV(T* output, T const* k_ptr, T const* v_ptr, T const* k_pe_ptr, int const num_requests, int64_t const* cu_seq_lens, int const max_input_seq_len, int num_heads, int kv_dim, int rope_dim, int kv_cache_tokens_per_block, int64_t kv_token_stride, cudaStream_t stream); template void invokeMLARopeAppendPagedKVAssignQ(KVBlockArray& kv_cache, T* q_ptr, T* latent_cache_ptr, int const num_requests, int64_t const* cu_ctx_cached_kv_lens, int64_t const* cu_seq_lens, int const max_input_uncached_seq_len, float2 const* cos_sin_cache, size_t head_num, int nope_size, int rope_size, int lora_size, float const* kv_scale_orig_quant_ptr, cudaStream_t stream); } // namespace kernels } // namespace tensorrt_llm